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1. Methods 

1.1. Detector analysis of HET-s(218-289) data 

Detector analysis is performed by fitting experimental data to a set of detection vectors,[1] 

using the DIFRATE software.[2] Detection vectors (   
!
rn ) were optimized to yield the 

sensitivities shown in Figs. 1A and 4A (main text). We solve the following equation for: 
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where the   
!
rn  are given in SI Table I and SI Table II (solved using ‘fit_data.m’ in the 

DIFRATE package). Other parameters required for calculating detector sensitivities are 

also given. Normalized rate constant sensitivities and detectors resulting from the 

experimental parameters and detection vectors in SI Table I are plotted in SI Fig. 1. 

 Note that we have previously shown that R1 and R1ρ are nearly orthogonal in the 

‘reduced space’ of relaxation rate constants  (see ref. [1], Fig. 7). Because of this, we can 

optimize a set of R1 detectors and, separately, a set of R1ρ detectors for analysis, and later 

combine with the order parameter, 1–S2. This results in block-diagonal matrices in SI Table 

I and SI Table II. If we do not optimize the detectors separately, very small values replace 

the zeros, resulting in nearly invisible changes to sensitivities and experimental detector 

responses. This does not mean that some motion cannot influence both R1 and R1ρ 

relaxation, but such a motion in between the sensitive ranges of R1 and R1ρ would increase 

both   ρ2
(θ ,S)  and   ρ3

(θ ,S) .  
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SI Table I: Detection vectors and parameters for main text Figs. 1 and 4. 

  
!r0   

!r1     
!r2     

!r3     
!r4

 ωr/2π / 
ms-1 

ω1/2π / 
ms-1 B0/T 

R1ρ,10 / ms-1 0 0 0 2.5493 0.2121 60 10.8 19.96 
R1ρ,16 / ms-1 0 0 0 2.5611 0.2756 60 16.1 19.96 
R1ρ,25 / ms-1 0 0 0 2.6253 0.4835 60 24.5 19.96 
R1ρ,38 / ms-1 0 0 0 1.9951 0.9841 60 37.6 14.09 
R1ρ,51 / ms-1

 0 0 0 1.6584 3.9584 60 50.8 14.09 
R1,400 / s-1

 0 2.2144 3.3930 0 0 – – 11.74 
R1,500 / s-1

 0 2.3359 2.4975 0 0 – – 14.09 
R1,850 / s-1 0 2.6170 1.1230 0 0 – – 19.96 

1–S2 7.5121 0.8419 0.7998 1.0729 0.8285 – – – 
Other parameters: δΗΝ/2π = -22283 Hz, ΔσN = 169.5 ppm 

 

 

SI Table II: Detection vectors and parameters for SI Fig. 6 and SI Fig. 7.  

  
!r0   

!r1     
!r2     

!r3     
!r4

 ωr/2π / 
ms-1 

ω1/2π / 
ms-1 B0/T 

R1ρ,10 / ms-1 0 0 0 2.6479 0.2175 60 10.8 19.96 
R1ρ,16 / ms-1 0 0 0 2.6602 0.2826 60 16.1 19.96 
R1ρ,25 / ms-1 0 0 0 2.7269 0.4956 60 24.5 19.96 
R1ρ,38 / ms-1 0 0 0 2.0996 1.0219 60 37.6 14.09 
R1ρ,51 / ms-1

 0 0 0 1.7449 4.1110 60 50.8 14.09 
R1,400 / s-1

 0 2.3419 3.5634 0 0 – – 11.74 
R1,500 / s-1

 0 2.4616 2.6128 0 0 – – 14.09 
R1,850 / s-1 0 2.7218 1.1584 0 0 – – 19.96 

1–S2 7.5208 0.8429 0.7935 1.1090 0.7890 – – – 
Other parameters: δΗΝ/2π = -22945 Hz, ΔσN = 169.5 ppm 
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SI Fig. 1. Normalized experimental sensitivities and detector sensitivities. A plots the sensitivities of 9 
experiments, all normalized to a maximum of 1. R1 experiments are labeled with the 1H Larmor frequency in 
MHz, and R1ρ experiments are labeled with the spin-lock strength in kHz.  B shows linear combinations of 
those sensitivities, yielding detector sensitivities. Rate constant sensitivities and detector sensitivities are 
obtained using the parameters in SI Table I. 

We also plot the experimental data used for obtaining detector responses, and the fit 

obtained using detection vectors in SI Table I (detection vectors in SI Table II achieve a 

near-identical fit- the change in reference bond length mainly scales the detector 

responses). Note that we simultaneously fit R1ρ data, with results appearing in main text 

Fig. 4 and SI Fig. 26.  
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SI Fig. 2. Fit of experimental data, using detection vectors found in SI Table I. Experimental data is taken from 
reference [3]. 

 

1.2. Molecular dynamics setup 

Setup of the MD trajectories followed the procedure of Dolenc et al.[4] and Lange et al.[5], 

using both the GROMOS 54a7[6] and AMBER 99SB-ILDN[7] force fields. The initial atom 

coordinates were taken from a solid-state NMR structure (PDB ID: 2KJ3).[8] Three HET-s 

molecules (residues 218-289) were used, while subsequent analysis was performed on the 

center molecule (cross-correlation is calculated also to the upper and lower molecule).  

 

The simulations using the GROMOS 54a7 force field were performed using the GROMOS 

software package.[9] The trimer was solvated with 20'559 water molecules in a cubic box 

with periodic boundary conditions, and the energy minimized with the protein coordinates 

position restrained (K = 2.5 x 104 kJ mol-1 nm-2). The system was further thermalized from 

60 K to 298 K, in steps of 60 K (60, 120, 180, 240, 298 K), with equilibration for 50 ps at 

each temperature. The first four steps were carried out under constant volume (NVT), the 
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last 50 ps at 298 K at constant pressure (NPT). The production run was 250 ns. Newton’s 

equations of motion were integrated using the leapfrog scheme[10] with a time step of 2 fs. 

The simple-point-charge (SPC) water model[11] was used. To keep the temperature close to 

its reference value, weak coupling to a temperature bath with a relaxation time of 0.1 ps 

was applied.[12] The peptides and the solvent were coupled to separate temperature baths. 

The pressure was maintained close to 1.013 bar (1 atm) by weak coupling to a pressure 

bath with a relaxation time of 0.5 ps and an isothermal compressibility of 4.575 × 10−4 kJ−1 

mol1 nm3.  A twin-range cutoff scheme with 0.8 and 1.4 nm was used for the nonbonded 

interactions. A reaction field force[13] with a relative dielectric permittivity of 61[14]  was 

applied to treat electrostatic interactions beyond the long-range cutoff. All bond lengths 

were constrained to ideal values using the SHAKE algorithm[15] with a tolerance of 10−4. 

The center of mass motion was stopped every 2 ps. The coordinates were written out every 

5 ps for analysis. 

 

The simulations using the AMBER 99SB-ILDN force field were performed using the 

GROMACS 4.5.7 software package.[16] The trimer was solvated with 12'966 water 

molecules in a cubic box with periodic-boundary conditions, and the energy minimized. 

Equilibration involved 100 ps at 298 K under NVT conditions, followed by 100 ps at 298 K 

under NPT conditions. The production run was 500 ns. The integration time step was 2 fs. 

The TIP3P water model[17] was used. The same thermostat and barostat techniques and 

parameters were used as for the GROMOS simulations. Separate temperature baths were 

used for the peptides and the solvent. The particle-mesh Ewald (PME) method[18] with a 

straight cutoff of 1.0 nm was used for the nonbonded interactions. All bond lengths were 

constrained to ideal values using the LINCS algorithm[19] with an order of four. The center of 

mass motion was stopped every 20 fs. The coordinates were written out every 5 ps for 

analysis.  

2. Relating detector responses to order parameters 
Detectors are a relatively new concept for the characterization of dynamics, so that the 

interpretation of a detector response is not immediately obvious. We discuss here briefly 

the relationship of detector responses to the more traditional order parameter, S2. In 

relaxation studies, the total order parameter gives the value of the correlation function at 

time  t = ∞ , for example, the exponentials in main text eq. (1) become zero, such that  
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C(t) = lim

t→∞
S2 + (1−S2) θ(z)exp(−t / 10z ⋅1 s)dz

−∞

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= S2

.
  (S2) 

 

The order parameter (strictly speaking, 1–S2), tells us about the total amount of motion for a 

given bond, without any dependence on correlation time (experimentally, we will not see 

some motions with correlation times longer than the timescale of the experiment used to 

measure the order parameter, but we neglect this in our example here). In other words, 

  (1−S2)  is just the integral of the distribution of motion (  (1−S2)θ(z)  integrates to   (1−S2) , 

since by definition   θ(z)  integrates to 1). On the other hand, detector responses depend on 

a sensitivity, which is a function of correlation time, such that 

  
ρn

(θ ,S) = (1−S2) θ(z)ρn(z)dz
−∞

∞

∫
.
  (S3) 

We plot an example distribution of motion in SI Fig. 2, and the sensitivities of several equal-

maximum normalized detectors,   ρn(z) . Note that we can think of the sensitivity of the order 

parameter as being 1 for all z, since replacing   ρn(z)  in eq. (S3) with 1 results simply in an 

integral of the distribution. Then, the area under the distribution in SI Fig. 2A is   (1−S2)  

(region highlighted in grey in SI Fig. 2A). The product of the sensitivity of each detector, 

  ρn(z) , with the distribution is also plotted in SI Fig. 2A, with the area under each resulting 

curve highlighted in color. The areas under these curves correspond to the detector 

responses (  ρn
(θ ,S) ), where   (1−S2)  and the   ρn

(θ ,S)  are shown in SI Fig. 2B. Then, we see that 

each detector selects a part of the total amount of (1–S2), where that part corresponds to a 

specific range of correlation times.  

Equal-maximum normalized detectors yield the part of   (1−S2)  where a detector is 

sensitive, and so are comparable to traditional order parameters. However, in this study, we 

eventually conclude that motion is broadly distributed over a wide range of correlation times. 

In this case, it is possible to estimate the amplitude of the distribution itself at the detector 

centers,   zn
0 , if we use equal-integral normalized detectors (ref. [1], Fig. 11(b), where this 

relationship is obtained if the distribution is approximately linear over the sensitive range of 

the detector). We demonstrate this behavior here (SI Fig. 2C), where bars show the 

detector responses, plotted at the detector center. Then, we see that the bars 

approximately intersect the distribution. Note that equal-integral normalized detectors yield 

a weighted average of   (1−S2)θ(z) , where weighting is largest near   zn
0 .  



 8 

 

 

 

 

 
SI Fig. 3. Distribution of motion vs. detector responses. A plots the sensitivity of an S2 measurement and the 
sensitivities of equal-maximum normalized detectors ρ1–ρ4 (left axis). On the right axis, an example 
distribution of motion is plotted,   (1−S2)θ(z) , and regions highlighted in color correspond to curves obtained 
from multiplying the distribution by the detector sensitivity,   ρn(z) . The area under these curves is the detector 
response (or order parameter), which are shown in B. We see that each detector response is simply part of 
the total order parameter, filtered for a specific range of correlation times. C shows sensitivities of equal-
integral normalized detectors (left axis), and the same distribution of motion. In this case, detector responses 
(bars, right axis) estimate the amplitude of the distribution of motion (right axis) at the center of the detector, 

  zn
0 . 

Equal-integral normalized detectors may also be related to order parameters. 

However, since these estimate the amplitude of the distribution, we must define a range of 
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correlation times for which we are interested. For example, in main text Fig. 1, we see that 

for residue 235E, the average of   ρ1
(θ ,S)  and   ρ2

(θ ,S)  is 0.015. These two detectors are 

separated by about an order of magnitude, so we could estimate that the distribution of 

motion has an average amplitude of approximately   
(1−S2)θ(z) ≈ 0.015  over a range 

  Δz = 1. Then, we can estimate that   (1−Si
2) , i.e. an order parameter for the part of the total 

motion in this region, is given by   
(1−Si

2) = (1−S2)θ(z) Δz = 0.015 ×1= 0.015 . However, we 

do not know if the actual motion covers a broader range of correlation times than this (MD 

suggests it may cover ~2.5 orders of magnitude, see SI Fig. 13). If we take this broader 

range, then we arrive at   (1−Si
2) = 0.015 × 2.5 = 0.037 . Due to the uncertainty in the range, 

 Δz , that a given motion may cover, we prefer to simply report the detector response,   ρn
(θ ,S) , 

directly, although this approximation is still useful to obtain a more familiar representation of 

the internal dynamics. 

3. Calculating detector responses from MD 

3.1. Calculating the correlation function 

Relaxation due to re-orientational motion in NMR is a function of the time-correlation 

function of rank-2 tensors. If we consider motion of some bond vector with index k, given by 

a time-dependent unit vector,    ek (τ ) , we can calculate the correlation function for the rank-2 

tensor aligned with that bond vector (for example, representing the dipole coupling tensor 

between the two nuclei connected by that bond, in this study the backbone 1H and 15N 

nuclei). 

   C(t) = P2(ek (τ ) ⋅ek (t + τ ))
τ
 (S4) 

Here,   P2(x) = (3x2 −1) / 2 , the second Legendre polynomial, where we take the dot product 

between the bond vector at times τ  and  t + τ . This yields the cosine of the angle between 

the two vectors (since    ek (τ )  is normalized to a length of one). This value is averaged over 

the initial time, τ . Numerically, Eq. (S2) is calculated from a trajectory as 

   
C(tn) = 1

N − n
1
2

3((ek (ti ) ⋅ek (ti+n))2 −1)( )
i=0

N−n−1

∑ , (S5) 

where the time points in the MD trajectory are indexed from 0 to N–1 (for N time points).[20] 

For the nth time point of the correlation function, we take an average over N–n pairs of time 

points (for the nth time point, we average over all time points in the trajectory separated by 
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n, so the first pair of time points is i=0 and i=n, and the last pair of time points is i=N–n–1 

and i=N–1, which gives N–n pairs of time points in total). Note that before calculating the 

correlation function, we remove overall motion by superposition of the solute center-of-

mass and by aligning the Cα of the middle HET-s molecule for residues 226-245 and 262-

281 to a reference HET-s(218-289) structure, following the procedure of Dolenc et al.[4] 

3.2. Inverse Laplace transforms 

We assume that for each H–N bond, the correlation function extracted from the MD 

trajectory can be constructed from a sum of decaying exponential terms,[1] such that the 

correlation function is given by a distribution of correlation times: 

C(tn) = S2 + (1−S2) θ(z)exp(−t / (10z ⋅1 s))dz
−∞

∞

∫  (S6) 

Then, we may fit the correlation functions calculated from Eq. (S5) to a discretized version 

of Eq. (S6), given as 

C(tn) = S2 + [
!
θ ]m exp(−tn / (10zm ⋅1 s))

m=1

M

∑
,
 (S7) 

where  
!
θ  is a discretized form of the distribution (we absorb the prefactor, 1–S2, into the 

discretized distribution,  
!
θ ). To fit this function, we first construct a matrix, M: 

    

M =

exp(−t0 / 10z1) exp(−t0 / 10z2 ) ! exp(−t0 / 10zM )

exp(−t1 / 10z1) exp(−t1 / 10z2 ) ! exp(−t1 / 10zM )

" " # "
exp(−tN−1 / 10z1) exp(−tN−1 / 10z2 ) ! exp(−tN−1 / 10zM )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 (S8) 

The z that run across each row yield the correlation times included in the fit (  τm = 10zm ⋅1 s ), 

where we use M = 200 correlation times logarithmically spaced between 10 fs and 1 ms 

(note, we cannot reasonably extract 1 ms correlation times from a 500 ns trajectory, but we 

include rather long correlation times instead of trying to estimate where best to cut off the 

distribution). The different time points, tn, run down each column. 

 Then, we can construct a vector,   
!
C , which contains all numerically calculated values 

of   C(tn)  for some H–N bond, and solve 

    
!
C = M ⋅

!
θ + !ε ,  (S9) 

  
!
ε  is a vector containing the error of the fit of the distribution to the correlation function. We 

minimize     
!
w⋅ | !ε |2 , which is the sum of squares of the error,    |

!
ε |2 , times a weighting factor,   

!
w

. Here,  
!
θ  is the discretized form of the distribution function,   (1−S2)θ(z)  (where 1–S2 is 
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included in  
!
θ ). The exponential terms with the longest correlation times (up to 1 ms) result 

in essentially flat functions for our 250 and 500 ns trajectories. Then, we can omit S2 from 

Eqs. (S8) and (S9), and the offset due to S2 is easily absorbed into the longest correlation 

times.  

 Note that if we minimize the 2-norm of   
!
ε  directly, we will prioritize the fitting of longer 

timescales, for example, ns vs. ps, since there are more time points fitted for the longer 

correlation times. Therefore, we re-weight the fit and minimize 

     

!
w⋅ | !ε |2= (log(tn+1)− log(tn)) C(tn)− [M ⋅

!
θ ]n( )2

n=0

N−1

∑ ,  (S10) 

so that all decades will be equally well-fit (  wn = (log(tn+1)− log(tn)) ). For n = 0 (t0 = 0 s, C(t0) = 

1), this adds infinite weighting; in fact, we would like a perfect fit of the first time point, but 

numerically using infinite weighting is not possible. Thus, we set the weighting of the t0 

equal to the weighting of t1, and after fitting, we correct fitting of C(t0) = 1, by setting 

   
[
!
θ ]1 = 1− [

!
θ ]m

m=2

M

∑ , so that the sum of the discretized distribution is exactly one (usually this 

adjustment is negligible). Note that we resolve another problem with this weighting scheme: 

the correlation function is badly estimated by Eq. (S5) for long correlation times, since only 

a few time points are included in the average. Log-weighting gives low priority to the fitting 

of these time points, so that noise at these points does not affect the fit quality significantly 

(an alternative approach to resolve this issue is to simply truncate the correlation function to 

be shorter than the trajectory length, although it is somewhat arbitrary where to truncate the 

trajectory). The weighting of the last time point is undefined (tN–1), so we set the weighting 

for tN–1 equal to the weighting of tN–2.  

 A problem remains, in that we allow very long correlation times in the distribution,  
!
θ , 

but in principle cannot characterize these accurately. We could cut the distribution off at 

some correlation time, but the location of this cutoff is also somewhat arbitrary. Therefore, 

we note that it is possible to calculate the total order parameter, S2, assuming that the 

trajectory samples all configurations (with the correct weighting of those configurations). 

This is calculated as 

   
S2 = 3

2
[ek (τ )]α [ek (τ )]β τ

2

β=1

3

∑
α=1

3

∑⎡
⎣
⎢

⎤

⎦
⎥ −

1
2

,  (S11) 

where the indices α,β = 1-3 indicate the x, y, and z directions (derived in [21], see Eqs. 8 and 

11b, where   C(t →∞)  is calculated, note that in the reference, C(t) is scaled by the NMR 
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interaction size, whereas the interaction size is not included here). Then, we force the fitted 

correlation function to have a final value of S2, by requiring that 

   
[
!
θ ]m

m=1

M

∑ = 1−S2 .  (S12) 

This is achieved by progressively removing amplitude from the    [
!
θ ]m  starting from the 

longest correlations and moving towards shorter correlation times, until Eq. (S12) is 

satisfied.  

 This approach gives a stable value for the end of the correlation function 

  (C(t →∞) = S2) , whereas otherwise we must rely on the values determined for long 

correlation times with Eq. (S5), which are extremely unstable (see SI Fig. 4 and SI Fig. 5 for 

example). Furthermore, we are not required to select an arbitrary cutoff for the longest 

correlation times allowed in the distribution. Note that the assumption that the trajectory 

samples all configurations is not usually correct, but as long as the calculated detectors do 

not depend strongly on correlation times significantly longer than the trajectory, this will not 

strongly influence our calculation. An exception arises if a slow motion that is not fully 

sampled results in a reconfiguration of the protein that significantly modifies the faster 

dynamics; in this case, the lack of sampling will influence the characterization of the faster 

motions. Fits of the correlation functions obtained using AMBER and GROMOS force fields 

are shown in SI Fig. 4 and SI Fig. 5, respectively. Note that the ends of the correlation 

functions are not well fit, due to the weighting in Eq. (S10), but are forced to level off at the 

value of S2 calculated in Eq. (S11).  
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SI Fig. 4. Fits for inverse Laplace transform for the AMBER 99SB-ILDN force field. MD derived correlation 
functions shown in blue, and fit in red. Residue number is indicated in each plot. x-axis is on a log scale, 
although the t = 0 s point is shown, placed at the same x-axis position as the second time point (t = 5 ps). Fits 
are forced to level off at S2 (Eq. (S11)), which is indicated with a dotted line in each plot.   
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SI Fig. 5. Fits for inverse Laplace transform for the GROMOS 54a7 force field. MD derived correlation 
functions shown in blue, and fit in red. Residue number is indicated in each plot. x-axis is on a log scale, 
although the t = 0 s point is shown, placed at the same x-axis position as the second time point (t = 5 ps). Fits 
are forced to level off at S2 (Eq. (S11)), which is indicated with a dotted line in each plot.   
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 We should note a few practical aspects of fitting. We use the ‘lsqlin.m’ function in 

MATLAB to solve Eq. (S10), where we enforce that all elements of  
!
θ  are non-negative. 

Then, the elements of the discretized distribution,  
!
θ , are related to the continuous 

distribution,   (1−S2)θ(z) , according to  

   [
!
θ ]m ≈ (1−S2)θ(zm)Δz .  (S13) 

where Δz is the spacing between the log of the correlation times (  Δz = zm+1 − zm  for all m). 

Discretization leads to small errors, so we indicate this throughout (≈ ), although typically 

errors from the approximation are negligible. 

 

3.3. Numerical calculation of detector responses and relaxation-rate constants 

Detector responses may be calculated from the discretized distribution function,  
!
θ , 

according to 

   
ρn

(θ ,S) = (1−S2) θ(z)ρn(z)dz
−∞

∞

∫ ≈ [
!
θ ]mρn(zm)

m=1

M

∑ .  (S14) 

Eqs. (S7) and (S13) show that dz and (1–S2) are absorbed into    [
!
θ ]m  in the discretized form. 

One may similarly calculate relaxation-rate constants directly, using the same approach, 

and simply replacing the detector sensitivity with the relaxation rate constant sensitivity. 

   
Rζ

(θ ,S) = (1−S2) θ(z)Rζ (z)dz
−∞

∞

∫ ≈ [
!
θ ]mRζ (zm)

m=1

M

∑ .  (S15) 

Note that the rate constant sensitivity,   
Rζ (z) , is defined as the rate constant obtained for 

motion having a single correlation time   τ = 10z ⋅1 s  and an forder parameter such that 

  1−S2 = 1.[1] Detector responses calculated using Eq. (S14) are shown for the AMBER force 

field in the main text, Fig. 1, and for the GROMOS force field in SI Fig. 7. Relaxation-rate 

constants are discussed in SI section 4.1, with MD results shown in SI Fig. 9 and SI Fig. 10. 

 

3.4. Additional detector-response calculations 

In the main text, Fig. 1, we calculate experimental detector responses using a reference 

bond length of 1.03 Å, which is longer than the more often used 1.02 Å.[22] While 1.03 Å 

yields better agreement between ρ0 detectors calculated from MD using the AMBER 99SB-

ILDN force field and the experimentally determined detectors, we also compare using 

1.02 Å, shown in SI Fig. 6. Using a shorter bond length, in effect, means that more fast 

motions are included in the detector response,   ρ0
(θ ,S)

 (primarily vibrational and librational 
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motions). We see here that use of a shorter bond length when analyzing experimental data 

results in higher amplitude   ρ0
(θ ,S)  responses than found with the AMBER trajectory.   

 
SI Fig. 6. Comparison of NMR detector analysis with a reference bond length of 1.02 Å and detector 
responses calculated from a 500 ns AMBER 99SB-ILDN MD trajectory. A shows the sensitivities, ρn(z) of the 
three detectors. B shows the response of the three detectors as determined via NMR (colored lines, error 
bars give 95% confidence interval), and via MD simulation (black lines). The grey region is an approximate 
confidence interval for MD results, obtained by analyzing the first and second halves of the trajectory 
separately, and plotting the range of results.  

 We can understand this discrepancy in part by investigating the literature carefully to 

understand the origin of the 1.02 Å reference bond length. In fact, 1.041 Å is also proposed 

as a reference length. David Case suggests this length, based on theoretical calculation of 

the average bond length using 1/r6 averaging (since effective relaxation rates are affected 

by this term), for the H–N bond of N-methylacetamide in water at 0 K.[23] Using this 

reference length, resulting order parameters (where 1–S2 relates the amplitude of motion) 

or in our case, detector responses in principle exclude all ground state (0 K) motion, and 

only include motion appearing as the temperature is raised to room temperature. This result 

is consistent with experimental NMR measurements of Ottiger and Bax in aligned media.[24] 

However, Bernado and Blackledge later show that some of the excluded H–N motions are 

asymmetric, especially those resulting from peptide plane motion, so that while the average 

length of 1.041 Å may be correct, it actually corresponds to an asymmetric dipolar 
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tensor.[22] 1.02 Å is proposed as a reference length so that these asymmetric peptide plane 

motions are included in the dynamics analysis rather than removed via the average bond 

length. As such, we expect that using a 1.02 Å reference length then includes some of the 

ground-state vibrational motions in resulting values of 1–S2 or   ρ0
(θ ,S) . 

 These results, however, make it unclear how to compare the resulting values of 

  ρ0
(θ ,S)  (or 1–S2) to results obtained from MD. MD is a classical method, and so strictly 

speaking, has no true “ground state” vibrational motions since these are a quantum 

mechanical effect. However, to accurately reproduce protein dynamics, similar 

vibrations/librations are produced by the simulation, although not necessarily with the same 

amplitude as is present in the quantum-mechanical motion. In the absence of a clearly 

‘correct’ reference bond length, we have optimized the reference bond length to give the 

best overall agreement between the experimental and simulated values of   ρ0
(θ ,S) , arriving at 

a reference length of 1.03 Å. We expect this length to change depending on force field (for 

example, see SI Fig. 7 where we use 1.02 Å for comparison to the GROMOS force field). 

We note that this means that we should not over-interpret the good agreement of the 

average values of NMR- and MD-derived   ρ0
(θ ,S)  values, however, similar trends observed in 

main text Fig. 1 is indicative of good performance of the MD simulation. 

 For further investigation, we have also compared experimental detector responses 

using a second force field, GROMOS 54a7. In this case, a reference bond length of 1.02 Å 

yields better agreement between ρ0 derived with simulation and with experiment, as shown 

in SI Fig. 7. Agreement of detectors ρ1 and ρ2 is worse with the GROMOS force field. In 

particular, a number of residues show significantly more motion in simulation than 

experiment (e.g. for ρ0: 235-236, 243-244, 272; for ρ1: 242, 262, 279; for ρ2: 241-245, 247, 

262, 279). For this reason, we show subsequent analysis using the AMBER force-field in 

the main text, and analysis of the GROMOS force-field in the supporting information. 
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SI Fig. 7. Comparison of NMR detector analysis and detector responses calculated from a 250 ns GROMOS 
54a7 MD trajectory. A shows the sensitivities, ρn(z) of the three detectors. B shows the response of the three 
detectors as determined via NMR (colored lines, error bars give 95% confidence interval), and via MD 
simulation (black lines). 

 

3.5. Ill-posed problems in the detector analysis 

 So far, we have neglected the fact that solving Eq. (S10) requires an inverse-

Laplace transform, and therefore is a well-known ill-posed problem, meaning that there are 

multiple solutions.[25] A common approach to solve ill-posed problems is to minimize one of 

the derivatives of  
!
θ  (regularization), to force the distribution to be smoother, while still 

obtaining a high-quality fit of the corresponding correlation function. Note that the 

regularized solution is not always the correct solution. Instead, one should interpret 

broadening of the distribution as uncertainty. We show here that although regularization 

changes the resulting distribution,  
!
θ , it has little influence on the resulting detector 

responses. Thus, while we must solve an ill-posed problem to obtain detector responses, 

the responses themselves are well-defined. 

 To apply regularization to the calculation of the inverse Laplace transform, while 

fitting the correlation function of each H–N bond by minimizing Eq. (S10), we 

simultaneously minimize 
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λ [

!
θ ]m+1 − [

!
θ ]m( )2

m=1

M−1

∑ .  (S16) 

This has the effect of minimizing the first derivative of  
!
θ , where the relative priority of 

minimizing Eq. (S10) and Eq. (S16) is determined by the regularization parameter, λ .[26] By 

increasing λ , we can change the fits from very narrow distributions to very broad 

distributions. In SI Fig. 8A, we vary λ , and sum the resulting error in Eq. (S10) over the 

  C(t)  for all backbone H–N bonds, so that we see that good fits are obtained until  λ >103.9 , 

at which point the distribution functions,  
!
θ , are forced to be too broad to obtain a good fit. 

We can see the effect of the regularization parameter for residue 271Gly in SI Fig. 8B, 

where both distributions yield a good fit of the correlation function. Although these 

distributions appear to be rather different  (two distributions with the same integral, but one 

with narrow, high intensity lines, and the other with broad, low intensity features), the 

overlap of the detector sensitivities (  ρn(z) ) and the two distributions are about the same, so 

that Eq. (S14) yields approximately the same values for both distributions. This is shown in 

SI Fig. 8C, where detector responses for all residues are calculated, using distributions that 

are fitted with  λ = 0  and  λ = 103.9 . Then, as long as we obtain a good fit of the correlation 

function, we obtain very similar detector responses for the two values of λ . Note that this 

will not be the case if detector sensitivities are sufficiently narrow, since the use of 

regularization may then change the overlap of the distribution and detector sensitivity; 

practically, we require for the comparison that MD yields a more precise characterization of 

the correlation times than the experimental detectors (although we do not provide a means 

for determining that precision here, aside from the test we have just performed). Since 

detector responses do not change significantly as a function of λ , we simply set  λ = 0  for 

detector responses and rate constant calculations (Fig. 1B, SI Fig. 6, SI Fig. 7, SI Fig. 9, SI 

Fig. 10). 
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SI Fig. 8. Comparison of results as a function of regularization settings. The inverse Laplace transform is 
performed for different regularization settings (λ, see SI Eq. (S16)). A shows the total RMS for fitting 
correlation functions of all residues to text Eq. (2) where the regularization parameter is increased from 10-2 to 
109. B shows the sensitivity (ρn(z), solid lines, left axis) of three detectors obtained from NMR data, 
overlapped with the motional distribution ((1–S2)θ(z), dotted lines, right axis), obtained without regularization 
(black) and with λ=103.9 (pink). C shows the detector responses calculated from MD without regularization 
(black lines), and with regularization (pink lines). 

4. Fitting to multi-exponential correlation functions 
To show the problems arising from analysis of NMR data via fitting to a multi-exponential 

correlation function (multi-exponential fitting, MEF) for comparison to an MD trajectory, we 

first calculate relaxation-rate constants from the MD trajectory. We would like to show that 

poor MEF agreement is a result of the fitting method itself, as opposed to poor performance 

of the MD simulation. If rate constants are well reproduced compared to experiments, we 

can show that disagreement in MEF analysis comes primarily from the MEF model itself. 
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4.1. Rate constants calculated from MD trajectories 

 We can calculate relaxation-rate constants directly from the MD trajectory, to 

determine if poor reproduction of rate constants results in disagreement when using the 

MEF approach. This is usually achieved by fitting MD derived correlation functions to a 

multi-exponential model of the correlation function, and using the resulting correlation times 

and amplitudes to calculate contributions to the relaxation rate constants (Eq. (S15)). We 

implement this using a linear approach, where we allow for 200 different correlation times 

(log-spaced between 10 fs and 1 ms (the correlation times are fixed, but amplitudes are 

variable, see section 3.2 and 3.3). An alternative approach is to allow for only a few 

correlation times, but fit by allowing both the correlation times and amplitudes to vary.[20a, 27] 

The accuracy of the calculated rates constants should be similar with both methods, as 

long as a good fit of the correlation function is obtained, although in our hands the linear 

approach with fixed correlation times is computationally much faster. 

 The results of calculating R1 relaxation rate constants from MD trajectories are 

shown in SI Fig. 9 and SI Fig. 10 for AMBER and GROMOS force fields, respectively. 

Results of the AMBER force field are generally quite good, with the exception of some 

underestimation of the relaxation rate constants near β-sheets β2a and β4a. The GROMOS 

force field yields less agreement, so that we will use the results from the AMBER trajectory 

to compare model-free analysis of NMR data and MD data. 

 
SI Fig. 9. Comparison of 15N R1 rate constants obtained via NMR experiments and calculated from MD with 
the AMBER 99SB-ILDN force field. NMR experiments are described in [3]. A R1 at 400 MHz, B R1 at 500 MHz, 
C R1 at 850 MHz. Colored lines show experimental data with error bars indicating one standard deviation, and 
black lines show rate constants calculated from MD simulation. 



 22 

 
SI Fig. 10. Comparison of 15N R1 rate constants obtained via NMR experiments and calculated from MD using 
the GROMOS 54a7. NMR experiments are described in [3]. A R1 at 400 MHz, B R1 at 500 MHz, C R1 at 
850 MHz. Colored lines show experimental data with error bars indicating one standard deviation, and black 
lines show rate constants calculated from MD simulation. 

 

4.2. Fitting MD to a two-correlation time model 

Given the good agreement between R1 rate constants derived with the AMBER force field 

and measured experimentally, we will now compare multi-exponential fitting (MEF) results 

of the experimental data and simulation. Previous experimental analysis fitted data (3 R1, 5 

R1ρ, and 1 REDOR experiment, to obtain S2) to a correlation function having three decaying 

exponential terms.[3] The longest correlation time in the previous study was fitted globally to 

a value of 6.2 µs. Our trajectory (AMBER) is 500 ns long, so we cannot extract this longest 

correlation time. Thus, for comparison to MD results, we fit the MD-derived correlation 

functions to a bi-exponential correlation function with the following form: 

  C(t) = Sf
2Si

2 + (1−Sf
2)exp(−t / τ f )+Sf

2(1−Si
2)exp(−t / τ i ) . (S17) 

We do a simple error minimization between Eq. (S17) and the MD-derived correlation 

function (Eq. (S5)) for each HN bond in the middle HET-s(218-289) molecule, by varying Sf, 

Si, τf, and τi. Results are shown in SI Fig. 11, and compared to the previously published 

experimental analysis (the third motion determined experimentally, with τ = 6.2 µs is not 

shown, since this motion is not compared to the MD results). 
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SI Fig. 11. Comparison of MEF results using NMR data fits from ref. [3] and MD data fitted according to Eq. 
(S17). A compares   (1−Sf

2)  obtained via fitting NMR and MD data. B compares  τ f , C compares   (1−Ss
2) , and 

D compares  τ i . In each subplot, colored lines give the experimentally determine parameter, with error bars 
showing the 68% confidence interval, and black lines show the parameters obtained from fitting to a 
correlation function obtained from MD. Experimental R1ρ data was fit with a third exponential term, 

  (1−Ss
2)exp(−t / τ s ) ,[3] but is not shown here since the MD trajectory is not long enough for comparison 

(500 ns, with AMBER 99SB-ILDN force field). 

 Given the agreement obtained when comparing experimental and simulated R1 

relaxation-rate constants, the disagreement of the MEF-derived parameters is surprising. A 

large systematic offset is found for τf (SI Fig. 11B), and a smaller systematic offset for τi (SI 

Fig. 11D). Amplitude trends for 1–Si are missing, especially around residues 235 and 271 

(SI Fig. 11C). If these results were accompanied by poor reproduction of the R1 rate 

constants (SI Fig. 9) and poor agreement of the detector responses (main text, Fig. 1), we 

would assume that the MD does not reproduce the true dynamics well. However, R1 and 

detector agreement indicates good MD performance, so that disagreement must be 

attributed distortions introduced by fitting to a multi-exponential correlation function (or, 

similarly, by using an oversimplified model to fit the MD-derived correlation functions). 

4.3. Fitting MD to a three-correlation time model 

 A possible source of disagreement between MEF analysis of experimental data and 

MD-derived correlation functions would be under-fitting of the MD-derived correlation 

functions. We can reasonably fit a third correlation time to the MD correlation functions 

such that  



 24 

  

C(t) = S1
2S2

2S3
2 + (1−S1

2)exp(−t / τ1)+

S1
2(1−S2

2)exp(−t / τ 2)+S1
2S2

2(1−S3
2)exp(−t / τ 3)

. (S18) 

 In the Lipari-Szabo model-free approach,[28] all motions falling within the extreme 

narrowing limit (ωτ << 1, for all ω sampled by the experimental data set) are averaged 

together when fitting NMR relaxation data. For example, if ωτ1 << 1 and ωτ2 << 1, then the 

NMR relaxation data will be well-fit with the following correlation function 

  C(t) = Sf
2Si

2 + (1−Sf
2)exp(−t / τ f )+Sf

2(1−Si
2)exp(−t / τ i ) , (S19) 

where the terms are given by 

  

1−Sf
2 = (1−S1

2)+S1
2(1−S2

2)

τ f =
(1−S1

2)τ1 +S1
2(1−S2

2)τ 2

1−S1
2S2

2

Si
2 = S2

2

τ i = τ 2

, (S20) 

Here, the amplitude contributions of   (1−S1
2)  and   S1

2(1−S2
2)  are simply summed together, 

and  τ f  is the weighted average of  τ1  and  τ 2 . In SI Fig. 12, the MD correlation function is 

fitted to Eq. (S18), and compared to the parameters determined from NMR relaxation data, 

where results for the S1, S2, S3 and τ1, τ2, τ3 are used to calculate Sf, Si, τf, and τι according 

to Eq. (S20). We find much better agreement between τf determined via NMR and via MD, 

however, trends observed for 1–Si
2 in the NMR analysis still do not appear in the analysis 

of the MD trajectory, and systematic offsets of τi are still present.  
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SI Fig. 12. Comparison of MEF results using NMR data fits from ref. [3] and MD data fitted according to Eq. 
(S18). The motions with the two shortest correlation times obtained via MD are averaged together according 
to Eq. (S20). A compares 1–Sf

2, B compares τf, C compares 1–Si
2, and D compares τi. In each subplot, 

colored lines give the NMR derived dynamics parameters, with error bars giving the 68% confidence interval. 
Black lines give the MD derived parameters.  

 

5. Further analysis 

5.1. MD detector analysis with detectors optimized for MD data 

The MD trajectory can, in principle, provide us with greater correlation time discrimination 

than obtained with detector sensitivities optimized for characterization of experimental data 

(for example, see text Fig. 1). In particular, ρ0 is sensitive to a wide range of short 

correlation times, but also is sensitive to longer correlation times (see main text Fig. 1A). To 

determine whether most of the motion observed with ρ0 is fast or slow, we re-analyze the 

AMBER MD trajectory using detector sensitivities that are specifically optimized for 

characterizing MD. Results are shown in SI Fig. 13, where we see that relatively uniform 

motional amplitudes are found at the shortest correlation times, whereas large increases in 

amplitude in   ρ0
(θ ,S)  found in text Fig. 1B are mostly the result of slower motion (here, 

corresponding to   ρ5
(θ ,S) ). Note that some caution should be taken when interpreting results 

for long correlation times: it is difficult to quantify the correlation time of events happening 

infrequently in the trajectory (this is partially represented by the increasing uncertainty of 
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detectors with correlation time in SI Fig. 13, and the lack of precision with which we can 

determine these correlation times is represented by the breadth of the sensitivity of ρ5). 

Furthermore, the assumptions leading to eqs. (S11) and (S12), that is, that we sample all 

configurations, can easily omit some motions occurring at longer correlation times, and 

therefore   ρ5
(θ ,S)  will not contain contributions from these motions. 

 Note that we obtain detectors specifically for MD data in the same manner as is used 

to obtain the experimental detectors. However, in this case each time point of the MD-

derived correlation function is regarded as an experimental data point. Then, the sensitivity 

of that time point to each possible correlation time (tn) is given simply by   exp(−tn / τ c ) , and 

the standard deviation of each time point is proportional to   σ (tn) ∝ n +1 , since n+1 time 

points are used to calculate that correlation time at tn. We then use singular value 

decomposition to optimize the detectors, as we have previously described in reference [29] 

(SI section 2).   
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SI Fig. 13. Timescale specific MD-optimized detector sensitivities. A shows the detector sensitivity of 6 
detectors to be used for MD analysis, where sensitivities have been normalized to have an integral of one. B 
shows the residue-specific detector responses for each detector (colored lines). Grey regions are obtained by 
analyzing the first and second half of the trajectories separately, which approximates a confidence interval for 
the detector responses. C shows the same data as B, but rescales the y-axis to make dynamics in the β-
sheet regions more visible. 

 

6. Calculating cross-correlation in MD 

6.1. Basic method 

 We would to know how our measured motions (H–N bond motions in this study) are 

related to surrounding motion. For this, we need to calculate the cross correlation between 

H–N motion and other vectors in the molecule (usually defined by bonds), and we want to 
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obtain cross correlations that have been correlation-time filtered using the same 

sensitivities,   ρn(z) , that are used to obtain the detector responses. The basic method to 

obtain such cross-correlation is straightforward, although implementation is more complex. 

We showed that to obtain detector responses, we find the correlation function of some H–N 

bond (strictly speaking, the auto-correlation function for the rank-2 tensor that lies parallel 

with the H–N bond). Then, we take the inverse Laplace transform (invert Eq. (S6), see 

section 3.2 for details), and finally use the resulting distribution of motion to obtain the 

detector response (Eq. (S14)). Cross correlation may be obtained the same way, simply 

replacing the auto-correlation function with the cross-correlation function between the H–N 

bond and some other vector in the molecule,[20b] which is given as 

   
Ck , j (t) =

4π
2L +1

YL,m(ek (τ ))YL,m
* (e j (t + τ ))

τm=−L

L

∑
.
  (S21) 

The    YL,m(ek (τ ))  are the rank-L spherical harmonics for vectors with direction given by the 

unit vector    ek (τ ) , which is time-dependent. An average is then taken over all τ  (as before, 

only the τ  for which  t + τ  is also included in the MD trajectory). Note that we may use 

either rank-1 or rank-2 cross correlations. The auto-correlation functions obtained with Eq. 

(S21) are the same as those obtained with Eq. (S5), in the rank-2 case. However, cross-

correlations have an angular dependence (depending on the mean angle between the two 

vectors being correlated), which is somewhat more complex for rank-2 correlations vs. 

rank-1 correlation (see section 6.2 for details). Therefore, we often calculate rank-1 cross-

correlations, as has been done in the main text (Figs. 2 and 3). We may calculate Eq. (S21) 

using discrete time points as follows, where the ti are the individual time points: 

   
Ck , j (tn) = 4π

2L +1
1

N − n
YL,m(ek (ti ))YL,m

* (e j (ti+n))
i=0

N−n−1

∑
m=−L

L

∑
.
  (S22) 

 Then, we assume that the cross-correlation function can also be constructed from a 

sum of decaying exponential terms, such that 

Ck , j (t) = Ck , j (t →∞)+ θk , j (z)exp(−t / (10z ⋅1 s))dz
−∞

∞

∫
.
  (S23) 

The discretized form is given as 

   
Ck , j (tn) = Ck , j (t →∞)+ [

!
θk , j ]m exp(−tn / (10zm ⋅1 s))

m=1

M

∑
,
 (S24) 

Eq. (S23) differs slightly from Eq. (S6), in that we do not define S2 for the cross-correlated 

motion. The reason is that auto-correlation functions must have an initial value of 1, so the 
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plateau value (S2) and the decaying components must sum to 1. We achieved this by 

requiring that   θ(z)  integrated to one, and then multiplied the whole integral by   (1−S2) . 

However, the initial value of the cross-correlation function may fall anywhere between 1 and 

-1 (the initial value gives the average correlation of bonds k and j at the same time, so this 

only must be one in the case that k = j). Then, we still define a plateau value, denoted here 

as   
Ck , j (t →∞) , but the distribution function,   

θk , j (z) , need not integrate to one and is not 

multiplied by a pre-factor. 

   
θk , j (z)  is the inverse Laplace transform of   

Ck , j (t) , which may be used to obtain a 

cross-correlated detector response, that is, the cross-correlation between two bonds that 

has been filtered by the sensitivity of a given detector. This is defined as follows, following 

the form of Eq. (S14) 

   

ρn
k , j = θk , j (z)ρn(z)dz

−∞

∞

∫

≈ [
!
θk , j ]mρn(zm)

m=1

M

∑ .
  (S25) 

  ρn
k , j  is the detector response of the cross-correlated motion (k and j typically indicate some 

pair of bonds). This cross-correlated detector response is specific to the range of 

correlation times defined for a given detector’s sensitivity,   ρn(z) . For easier interpretation, 

we calculate a correlation coefficient (based on Pearson’s r), defined as 

ρn,norm
k , j =

ρn
k , j

ρn
k ,kρn

j , j
,
  (S26) 

where the   ρn
k ,k  are the detector responses corresponding to the auto-correlation of some 

bond (or vector) k, evaluated using detector sensitivity,   ρn(z)  (note when correlating rank-2 

tensors, the   ρn
k ,k  are the usual detector responses, such that   ρn

k ,k = ρn
(θ ,S)  for the kth vector). 

  ρn
k , j  is the detector response obtained from the cross-correlation function. Then,   ρn,norm

k , j  

ranges from +1 for fully correlated motion, -1 for fully anti-correlated motion, and 0 for no 

correlation. Note that in Eq. (S26), if the   ρn
k ,k  become small, then calculation of ρn,norm

k , j  can 

become very sensitive to fitting variations in the inverse Laplace transform, causing results 

deviating above 1 and below -1. This is resolved using an eigenmode approach to obtaining 

the correlation functions and cross-correlated detector responses, as discussed in SI 

section 6.3. 
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6.2. Angular dependence of cross-correlation 

The sign of the cross correlation between two vectors depends on the angle between these 

vectors and the rank of the tensor correlation used. This dependence arises from the 

functional form of the 1st or 2nd order Legendre polynomial of the cosine of the angle 

between the two vectors: 

  

P1(cos(θk , j )) = cos(θk , j )

P2(cos(θk , j )) =
1
2

3cos2(θk , j )−1( ) ,
  (S27) 

For example, if the angle between the two bonds fluctuates around 0°, then both 

  
P1(cos(θk , j ))  and 

  
P2(cos(θk , j ))  will be positive (and scaled down from 1, depending on the 

amplitude of the fluctuation away from 0°). If, on the other hand, the angle fluctuations 

around 180°, 
  
P1(cos(θk , j ))  will become negative, but 

  
P2(cos(θk , j ))  will remain positive. 

Further angular dependencies are summarized in SI Fig. 14. 

 In this study, the angular dependence of the correlation coefficients has little 

consequence on our analysis, because in the HET-s(218-289) fibrils, most H–N bonds are 

either parallel or anti-parallel to each other (leading to positive and negative correlation, but 

little scaling of the absolute value of the correlation). In other proteins where bonds may 

take on a large number of relative orientations, this will make correlation of motion more 

difficult to interpret. A simple solution is to calculate both rank-1 and rank-2 correlations to 

verify that important correlations are not missed, although this is only a qualitative 

improvement and does not allow quantitative comparison of correlation behavior. A more 

rigorous approach would be to calculate the average direction of each bond vector for the 

whole trajectory. Then, one determines a transformation that rotates each average vector to 

the z-axis. The same transformation can then be applied to that bond for each time point in 

the trajectory. The result is a new set of vectors for every bond, that now all have the same 

average direction. These can be correlated instead of the original bonds, and now have no 

angular dependence. However, an investigation is still necessary to determine how such a 

transformation can affect the sign of the cross-correlation, especially for rank-1 correlation, 

where rank-2 correlations should be more straightforward, yielding only positive correlations 

for parallel vectors (a drawback is that the ability to distinguish between correlation and 

anti-correlation is lost for rank-2). 
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SI Fig. 14. Types of correlation for rank-1 and rank-2 tensors. A-E show rank-1 tensors, and F-J show rank-2 
tensors. The relative motion and orientation of the two tensors shown determine the behavior of the sign of 
the correlation. Two rank-1 tensors moving the same direction with the same orientation are positively 
correlated (A). However, inverting the direction of motion (B) or the orientation (C) of one of the tensors yields 
negative correlation (inverting both yields positive correlation again, (D). For rank-2 tensors, the sign of the 
correlation is not sensitive to the direction of the motion (G, I), but a 90º rotation of one of the tensors (H,I) will 
yield a negative correlation (although with only half the magnitude of the positive correlation). Zero correlation 
may be obtained for rank-1 tensors if they are oriented 90º from each other (E), whereas zero correlation is 
obtained for the rank-2 tensors if they are oriented at the magic angle (J, θ=54.7º). Note: if the motions of the 
two tensors are totally uncoupled, then we should always obtain zero correlation. However, if the angle 
between the two tensors is 90° (rank-1) or 54.7° (rank-2), we will obtain zero correlation even if the motion is 
coupled. 
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6.3. iRED method 

In section 6.1, we derived the definition of a cross-correlated detector response,   ρn
k , j  (Eq. 

(S25)), and the corresponding correlation coefficient,   ρn,norm
k , j  (Eq. (S26)). Evaluation of Eq. 

(S25), however, first requires inversion of Eq. (S23). Although we could adapt the 

methodology used in section 3.2, we require a more stable method here. The problem 

arises if the auto-correlated detector responses (  ρn
k ,k  in Eq. (S26)) are too small, variation 

in the results of the inverse Laplace transform can cause the correlation coefficients to 

become unphysical. This is because it becomes possible for small variations in the inverse 

Laplace transform to lead to   
ρn

k , j  becoming larger than   ρn
k ,kρn

j , j , so that the correlation 

coefficients have absolute values larger than 1. Note that such smaller errors are only 

significant when we need to take a ratio of detector responses, which is not required when 

calculating the detector response,   ρn
(θ ,S)  (Eq. (S14)). A secondary problem arises, if we 

want to correlate, for example, motion of all pairs of backbone H–N bonds in our 

simulations (see SI Fig. 16-SI Fig. 19), we must calculate and fit ~40,000 correlation 

functions (a feasible, but cumbersome calculation due to the high computation cost of 

correlation functions).  

 We can circumvent both of these problems, using an approach based on the work of 

Prompers and Brüschweiler.[30] The isotropic Reorientational Eigenmode Dynamics (iRED) 

method allows one to construct individual auto- and cross-correlation functions from a basis 

set of correlation functions. If we take M vectors in the molecule (usually bonds), then one 

can calculate M2 correlation functions (M auto-correlation functions, and M(M–1) cross-

correlation functions). The iRED method allows us to construct all of these correlation 

functions from M basis correlation functions,   ΔCm(t) . Clearly, this lowers the computational 

cost (by a factor of ~M). However, it will also become possible to perform inverse Laplace 

transform and calculate detector responses of the basis correlation functions. Then, the 

auto- and cross-correlated detector responses required for calculating correlation 

coefficients (Eq. (S26)) are constructed from these basis detector responses. By 

constructing the required detector responses from the detector responses of the basis 

correlation functions, we prevent   
ρn

k , j  from becoming larger than   ρn
k ,kρn

j , j . Although 

imperfect inverse Laplace transforms may still cause small variations in the detector 

responses of the basis correlation functions, we obtain a set of responses that are 

nonetheless physically consistent.  
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 The iRED methodology allows us to construct individual correlation functions from 

the basis correlation functions (minus their plateau values),   ΔCm(t) , as follows: 

  
Ck , j (t)−Ck , j (t →∞) = λm(| m〉)k (〈m |) j ΔCm(t)

m=1

M−(2*L+1)

∑   (S28) 

The  λm  are eigenvalues (sorted from smallest to largest) and   | m〉  are eigenvectors of the 

iRED matrix (M), and the   ΔCm(t)  are normalized basis correlation functions of the 

corresponding eigenvalues (normalization implies that   ΔCm(0) = 1 and   ΔCm(t)  has a final 

value of 0, see below for calculation of   ΔCm(t) ). These terms are derived by Prompers and 

Brüschweiler;[30b] we will describe how to calculate M and derive the other terms later for 

completeness, but we will first show how we may use them to construct the required cross-

correlated detector responses and correlation coefficients. Note that the summation omits 

the largest 2L+1 modes (L is the tensor rank). These modes contain overall motion of the 

structure - motions that result from rotation of the structure, but do not yield any internal 

structural rearrangement. Since we use solid-state samples, we assume there is no overall 

motion, and therefore omit these modes. Note that to use the iRED approach, we must 

analyze a sufficient number of vectors (e.g. bonds) in the molecule simultaneously. This is 

because removal of the 2L+1 modes can remove some internal motion, and so the more 

modes utilized, the smaller the fraction of the internal motion removed (e.g. suppose we 

have L=2, and only include five bonds, then all five of our modes would be removed, 

leaving no internal motion).[31] 

 Now, we derive the cross-correlated detector responses using the iRED method. Let 

us first assume that we can construct   ΔCm(t)  from a sum of decaying exponential terms: 

  
ΔCm(t) = θm(z)exp(−t / (10z ⋅1 s)dz

−∞

∞

∫ . (S29) 

We use   ΔCm(t)  defined such that   ΔCm(0) = 1 and   ΔCm(t →∞) = 0 . Then, we can obtain the 

inverse Laplace transform according to SI section 3.2, and treat the correlation function as 

if S2=0.  

 It follows that we can construct any correlation function from the distribution 

functions of the basis correlation functions,   θm(z) : 

  
Ck , j (t)−Ck , j (t →∞) = λm(| m〉)k (〈m |) j θm(z)exp(−t / (10z ⋅1 s))dz

−∞

∞

∫
m=1

M−(2*L+1)

∑
.
  (S30) 

A simple switch of the order of the sum and integral yields (second line restates Eq. (S23)): 
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Ck , j (t)−Ck , j (t →∞) = λm(| m〉)k (〈m |) j
m=1

M−(2*L+1)

∑ θm(z)exp(−t / (10z ⋅1 s))dz
−∞

∞

∫

= θk , j (z)exp(−t / (10z ⋅1 s))dz
−∞

∞

∫ ,
  (S31) 

so that it is possible to obtain   
θk , j (z) : 

  
θk , j (z) = λm(| m〉)k (〈m |) j

m=1

M−(2*L+1)

∑ θm(z)   (S32) 

Furthermore, we may calculate the detector response for the cross-correlation function,  

  ρn
k , j , where we again switch the order of the sum and integral in the second line. 

  

ρn
k , j = θk , j (z)ρn(z)dz

−∞

∞

∫ = λm(| m〉)k (〈m |) j
m=1

M−(2*L+1)

∑ θm(z)ρn(z)dz
−∞

∞

∫

= λm(| m〉)k (〈m |) j θm(z)ρn(z)dz
−∞

∞

∫
m=1

M−(2*L+1)

∑
  (S33) 

Then, we define the basis detector response,  ρn
m , to obtain a simple formula for the cross-

correlated detector responses,   ρn
k , j : 

  

ρn
m = θm(z)ρn(z)dz

−∞

∞

∫

ρn
k , j = λm(| m〉)k (〈m |) j ρn

m

m=1

M−(2*L+1)

∑ .
  (S34) 

We may construct all auto- and cross-correlated detector responses,   ρn
k , j , from the basis 

detector responses,  ρn
m , resulting from the M basis correlation functions,   | m〉 . Therefore, 

we only perform the inverse Laplace transform on the basis correlation functions,   Cm(t) . 

After obtaining the   ρn
k , j , we may calculate the correlation coefficients (Eq. (S26)).  

 Eq. (S28) is derived by Prompers and Brüschweiler and the terms in it are 

defined,[30] but we summarize the results that are necessary for its application to detectors 

here. The  λm  and   | m〉  are eigenvalues and eigenvectors of a matrix, M, for which each 

element is calculated for rank-L cross-correlation: 

   
Mk , j = PL(ek (τ ) ⋅e j (τ )

τ

.
  (S35) 

Here, the    ek (τ )  are unit vectors, indicating the direction of the kth vector (usually a bond) at 

time τ  in the trajectory. Then, the dot product yields the cosine of the angle between the 

two vectors, and PL is the rank-L Legendre polynomial (  P1(x) = x ,   P2(x) = (3x2 −1) / 2 , etc.). 
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An average is taken over all times, τ , of the trajectory, so that the Mk,j can be calculated 

numerically as 

   
Mk , j =

1
N

PL(ek (τ i ) ⋅e j (τ i ))
i=0

N−1

∑
.
  (S36) 

Once M is calculated, we calculate its eigenvalues and eigenvectors (the eigenvectors, 

  | m〉 , having a 2-norm of 1), so that    M | m〉 = λm | m〉 . 

 Once we have M and its eigenvalues and eigenvectors, we then need to calculate 

the mode correlation functions,   Cm(t) . First, we calculate the amplitude of each of the 2L+1 

spherical components of each mode. For the mth mode, we calculate all the spherical 

components of each of the M vectors,    ek (t) . 

    

Rank 1:

Y10(θk (t),φk (t)) = 1

2
c cosθk (t)

Y1±1(θk (t),φk (t)) = ∓ 1
2

c exp(±iφk (t))sinθ(t)

c = 3 / (2π )

Rank 2:

Y20(θk (t),φk (t)) = c 2 / 3(3cos2θk (t)−1)

Y2±1(θk (t),φk (t)) = 2c cosθk (t)sinθk (t)exp(±iφk (t))

Y2±2(θk (t),φk (t)) = c sin2θk (t)exp(±2iφk (t))

c = 15 / (32π )

cosθk (t) = [ek (t)]z,  sinθk (t) = ([ek (t)]x )2 + ([ek (t)]y )2,

exp(±iφk (t)) = [ek (t)]x ± i[ek (t)]y ,  exp(±2iφk (t)) = exp(2log([ek (t)]x ± i[ek (t)]y ))

  
(S37) 

Then, we obtain the amplitudes of the lth spherical component of the mth eigenmode by 

projecting the mth mode onto the lth spherical components for all M vectors,    ek (t)  (at some 

time t). 

  am,l (t) = 〈m |YL,l (t)〉

.
  

(S38) 

Numerically, this is implemented as 

  
am,l (t) = (〈m |)kYL,l (θk (t),φk (t))

k=1

M

∑
.
  (S39) 
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  (〈m |)k  is simply the complex conjugate of the kth element of   | m〉 . From the   am,l (t) , we can 

calculate the correlation functions of each mode, m, for each spherical component, l.  

  

Cm,l (t) = am,l
* (t + τ )am,l (τ )

τ

Cm,l (tn) = 1
N − n

am,l
* (ti+n)

i=0

N−n−1

∑ ⋅am,l (ti ) .
  (S40) 

We obtain   Cm(t)  by simply summing together all correlation functions,   Cm,l (t) . 

  
Cm(t) = Cm,l (t)

l=−L

L

∑   (S41) 

  Cm(t)  may not decay fully to zero, but we may obtain its equilibrium value as 

  
Cm(t →∞) ≅ | 〈am,l (τ )〉τ |2

l=−L

L

∑ = 1
N

am,l (ti )
i=0

N−1

∑
2

l=−L

L

∑   (S42) 

Note that this equilibrium value is much more stable than simply taking the final value of the 

correlation function, which results from averaging only a single pair of time points. Finally, 

we define   ΔCm(t) : 

  
ΔCm(t) =

Cm(t)−Cm(t →∞)
Cm(0)−Cm(t →∞) ,

  (S43) 

which has an initial value of   ΔCm(0) = 1 and a final value of   ΔCm(t →∞) = 0   

7. Cross-correlation results 

7.1. AMBER H–N and peptide plane correlation (rank-2) 

In main text Fig. 2, we calculate the correlation of H–N motion with its peptide plane, using 

rank-1 tensors. For comparison, we calculate the same correlation using rank-2 tensors. 

Results are very similar, with differences arising from the angular dependence of the tensor 

correlation (see SI section 6.2). The degree of similarity is due to the fact that the H–N bond 

vector and the bisector of the C’–Cα and C’–N bonds are nearly co-linear, so that both 

  
P1(cos(θk , j ))  and 

  
P2(cos(θk , j ))  fluctuate around 1. Therefore, if the bonds being correlated 

are not co-linear, one may expect more significant differences and sign changes when 

comparing rank-1 and rank-2 tensor correlations. 
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SI Fig. 15. Rank-2 correlation of H–N bond motion with its peptide plane. The inset shows the two vectors 
being correlated, which are the H–N bond and a vector bisecting the C’–N and C’–Cα bonds. Correlation 
coefficients are shown with timescale filtering using the sensitivities of ρ0, ρ1, and ρ2, which are plotted in SI 
Fig. 6A. Dotted lines indicate the median values of the cross-correlation. 

 

7.2. AMBER cross-correlation analysis 

Main text Fig. 3 selects the H–N bonds of a few residues and shows how these motions are 

related to motions of the surround H–N bonds. However, by using the iRED approach, we 

easily obtain all cross-correlations. SI Fig. 16 color-codes the rank-1 correlation matrix for 

all correlations between the center HET-s molecule to all three molecules (hence, we 

display a 70x210 matrix. Note we can obtain a full 210x210 matrix, but we expect 

correlations of the outer two molecules to be less useful, since they are not sandwiched by 

two HET-s molecules). Black squares indicate the main diagonal (autocorrelation, for which 

  ρn,norm
k ,k ≡ 1), near which we see the highest correlation, since squares near the main 

diagonal indicate residues neighboring in the chain. Light grey diagonal lines in SI Fig. 16 

indicate where two residues sit directly above each other in the fibril, so that we expect 

higher correlation along these diagonals. This is observed for ρ1 and ρ2. Checkerboard 

patterns arise for ρ2 on the main diagonal when motion is correlated for residues separated 

by several residues. Similar checkerboard patterns also arise on the off diagonals (light 

grey lines) when motion is correlated over several fibril layers. This is particularly apparent 

for ρ2, where correlation was also seen over several residues and fibril layers in main text 

Fig. 3. 

 SI Fig. 17 shows cross-correlation calculated for rank-2. Similar results are obtained, 

although most correlations are positive due to different angular dependence, as is 

discussed in SI section 6.2. We find interpretation of rank-1 correlations simpler, but 

provide this result to verify that the expected rank-2 result is obtained. 
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SI Fig. 16. Rank-1 correlated H–N bond motion between molecule 2 of the MD trajectory (y-axis) and all 
molecules (AMBER force field). All elements are normalized by the square-root of the two corresponding 
diagonal elements (so the black, diagonal elements are all 1). All non-diagonal elements are coded with a 
blue-white-red color scale, corresponding to -0.80, 0, +0.80. Light grey lines through the plots indicate 
residues positioned exactly one layer above in the β-sheet (for example, residue 235 sits next to residue 271 
of the same molecule, and 271 of the previous molecule. Two layers away corresponds to 235 from the two 
neighboring molecules). 
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SI Fig. 17. Rank 2 correlated H–N bond motion between molecule 2 of the MD trajectory (y-axis) and all 
molecules (AMBER force field). All elements are normalized by the square-root of the two corresponding 
diagonal elements (so the black, diagonal elements are all 1). All non-diagonal elements are coded with a 
blue-white-red color scale, corresponding to -0.65, 0, +0.65. Light grey lines through the plots indicate 
residues positioned exactly one layer above in the β-sheet. 
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7.3. AMBER noise analysis 

We perform noise analysis by processing the first and second 250 ns of the full 500 ns 

trajectory separately, and taking the sum and difference of the resulting   ρn
k , j . Both the sum 

and difference are normalized to obtain correlation coefficients using the   ρn
k ,k  from the 

results of the sum calculation. Results are plotted in SI Fig. 18 (sum) and SI Fig. 19 

(difference). The amount of correlation in the difference results is a good estimate of the 

overall noise level, i.e. apparent correlations in the motion that in fact are not real, but are 

rather the result of a finite trajectory. For example, we see that detectors corresponding to 

longer correlation times exhibit more noise- this is because fewer occurrences of these 

motions are present in the trajectory, and so our statistics are less reliable.  Note that it is 

not usually a good idea to interpret single correlations. This is because we show 14,700 

correlations in SI Fig. 18 and SI Fig. 19, so we will have numerous false correlations even if 

the confidence in the individual correlations is highly accurate. Instead, the overall trends 

should be interpreted. Trends appearing in both the sum and difference calculations may 

still be real correlations, although the amplitudes of those correlations have a high 

uncertainty. 
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SI Fig. 18. Noise analysis: sum of correlations. Rank 1 correlations were calculated for the first and second 
halves of the MD trajectory (AMBER force field). The correlations (  ρn

k , j ) are either added together or 
subtracted (added in this plot), and normalized by the square-root of the product of the two corresponding 

diagonal elements (
  
ρn

k ,k ⋅ ρn
j , j ). Patterns of cross-correlation appearing in this plot, but not in the difference 

plot (SI Fig. 19) are likely to be real correlations. 
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SI Fig. 19. Noise analysis: difference of correlations. Rank 1 correlations were calculated for the first and 
second halves of the MD trajectory (AMBER force field). The correlations (  ρn

k , j ) are either added together or 
subtracted (subtracted in this plot), and normalized by the square-root of the product of the two corresponding 

diagonal elements of the sum of correlations (
  
ρn

k ,k ⋅ ρn
j , j ).  

7.4. Additional 3D plots for AMBER trajectory 

Main text Fig. 3 shows correlations of several H–N bonds to the H–N bonds of all other 

residues. We show several more residues in SI Fig. 20 to give a more complete picture of 

the correlated motion. 
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SI Fig. 20. Detector-specific correlation coefficients for several residues (rank-1), calculated from the AMBER 
trajectory. Each subplot gives the correlation coefficients between an H–N bond of the middle HET-s(218-289) 
molecule (shown in black) to all other H–N bonds, for ρ0, ρ1, and ρ2. The volume of each atom is proportional 
to 

  
| ρn,norm

k , j | , whereas color-coding also indicates the sign of 
  
ρn,norm

k , j . All atoms in the same peptide plane as the 

H–N bond are sized and colored according to 
  
ρn,norm

k , j  for better visibility. A-C are correlations to the H–N bond 
of residue 239Val, D-F for residue 267Val, and G-I for residue 271Gly. Yellow/cyan/magenta fibril plots (lower 
right) serve as a reference to see the overall fibril structure and orientation. 

 

7.5. Total correlation for AMBER trajectory 

Note that simply calculating the overall correlation between motion of different residues 

may not always reveal all timescale-specific correlation. For example, here we calculate the 

total correlation (effectively, using a detector with uniform sensitivity,   ρn(z) = 1 for all z ) 
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using the AMBER trajectory, where most of the correlations seen in text Fig. 3 and SI Fig. 

20 vanish. Note, however, that for some systems, the total correlation may still be useful, as 

was shown by Salvi et al. for intrinsically disordered proteins.[32] 

 
SI Fig. 21. Correlation coefficients calculated for the total motion (full range of correlation times) for selected 
residues (AMBER force field). Elements have been normalized by the square-root of the corresponding 
diagonal elements. Red and blue coloring indicates positive and negative correlation, respectively (max/min: 
+/-0.8). The residue to which each plot corresponds is shown as black (and has a normalized value of 1). 

 

7.6. Cross-correlation for GROMOS trajectory 

We also perform cross-correlation analysis for the GROMOS trajectory, to compare the 

degree of cross-correlation to the AMBER results. The overall results are shown in SI Fig. 

22, with cross-correlation to several residues plotted onto the HET-s trimer in SI Fig. 23 and 

SI Fig. 24. 
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SI Fig. 22. Rank-1 correlated H–N bond motion between molecule 2 of the MD trajectory (y-axis) and all 
molecules (GROMOS force field). All elements are normalized by the square-root of the two corresponding 
diagonal elements (so the black, diagonal elements are all 1). All non-diagonal elements are coded with a 
blue-white-red color scale, corresponding to -0.80, 0, +0.80. Light grey lines through the plots indicate 
residues positioned exactly one layer above in the β-sheet (for example, residue 235 sits next to residue 271 
of the same molecule, and 271 of the previous molecule. Two layers away corresponds to 235 from the two 
neighboring residues). 
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SI Fig. 23. Detector-specific correlation coefficients for several residues (rank-1), calculated from the 
GROMOS trajectory. Each subplot gives the correlation coefficients between an H–N bond of the middle HET-
s(218-289) molecule (shown in black) to all other H–N bonds, for ρ0, ρ1, and ρ2. The volume of each atom is 
proportional to 

  
| ρn,norm

k , j | , whereas color coding also indicates the sign of 
  
ρn,norm

k , j . All atoms in the same peptide 

plane as the H–N bond are sized and colored according to 
  
ρn,norm

k , j  for better visibility. A-C are correlations to 
the H–N bond of residue 232Arg, D-F for residue 235Glu, and G-I for residue 248Ala. Yellow/cyan/magenta 
fibril plots (lower right) serve as a reference to see the overall fibril structure and orientation. 
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SI Fig. 24. Detector-specific correlation coefficients for several residues (rank-1), calculated from the 
GROMOS trajectory. Each subplot gives the correlation coefficients between an H–N bond of the middle HET-
s(218-289) molecule (shown in black) to all other H–N bonds, for ρ0, ρ1, and ρ2. The volume of each atom is 
proportional to 

  
| ρn,norm

k , j | , whereas color coding also indicates the sign of 
  
ρn,norm

k , j . All atoms in the same peptide 

plane as the H–N bond are sized and colored according to 
  
ρn,norm

k , j  for better visibility. A-C are correlations to 
the H–N bond of residue 239Val, D-F for residue 267Val, and G-I for residue 271Gly. Yellow/cyan/magenta 
fibril plots (lower right) serve as a reference to see the overall fibril structure and orientation. 

Note that the large degree of correlation in the sensitive range of ρ0 for 248Ala (SI Fig. 

23G) is actually due to correlation at long correlation times. We can see this by defining a 

new ρ0 that is only sensitive to short correlation times. This new sensitivity is shown in SI 

Fig. 25A, where we see that the resulting cross-correlation is almost zero for nearly all 

residue pairs shown in SI Fig. 25B. 
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SI Fig. 25. Modified ρ0 detector that is only sensitive to short correlation times. A shows the new detector 
sensitivity, where dotted line shows the region of the detector sensitivity that has been set to zero. B shows 
the cross-correlation for the same residues as shown in SI Fig. 23 and SI Fig. 24.  

 

8. Analysis of microsecond motions 
Data shown in main text Fig. 4 is re-plotted here, in order to show the amplitudes of the 

highest detector responses, which are cut off in the main text. These are also accompanied 

by high uncertainty, since the same peaks tend to have very broad linewidths and low 

amplitude in the experimental spectra. 
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SI Fig. 26. Detector responses sensitive to µs motion (  ρ3 :10z0

~ 2 µs ,  ρ4 :10z0

~ 25 µs ). Detector responses 

  ρ3
(θ ,S)  and   ρ4

(θ ,S)  are shown, where the sensitivities of ρ3 and ρ4 are given in main text Fig. 4A. Note that this is 
the same plot as main text Fig. 4B, with an expanded y-axis to show the detectors with the highest responses. 
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