
Angewandte
Chemie

Internationale Ausgabe: DOI: 10.1002/anie.201707316Molecular Motion Very Important Paper
Deutsche Ausgabe: DOI: 10.1002/ange.201707316

Because the Light is Better Here: Correlation-Time
Analysis by NMR Spectroscopy
Albert A. Smith, Matthias Ernst,* and Beat H. Meier*

Angewandte
ChemieZuschriften

13778 � 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. 2017, 129, 13778 –13783

http://dx.doi.org/10.1002/anie.201707316
http://dx.doi.org/10.1002/ange.201707316
http://orcid.org/0000-0002-9372-7297
http://orcid.org/0000-0002-9372-7297
http://orcid.org/0000-0002-9538-6086
http://orcid.org/0000-0002-9107-4464
http://orcid.org/0000-0002-9107-4464


The story starts: Mullah Nasruddin has lost his ring and is
searching under a street lamp. A passer-by stops to help him
find it. After half an hour, he asks “Are you sure you lost your
ring here?” “Not here! I lost the ring in the basement of my
house.” The passer-by is perplexed. When he asks why they
are looking for the ring outside, Nasruddin replies it is
because the light is better here! (Adapted from The Funniest
Tales of Mullah Nasruddin[1])

Dynamics play a critical role in understanding the stability
and function of proteins.[2] NMR studies can provide such
information, since relaxation here is the result of incoherent
modulation of NMR interactions through stochastic motion in
the sample. Due to the large number of internal degrees of
freedom (3N�6 where N is the number of atoms in the
protein, typically > 1000), interpretation of the data must
involve severe approximations.

NMR relaxation-rate constants allow modeling of the
underlying motion. The Wangsness–Bloch–Redfield theory
details how to calculate relaxation-rate constants from
specific motions,[3] but dependence of each relaxation-rate
constant on multiple, orientation-dependent correlation
functions makes extraction of the original motion nearly
impossible. In solid-state NMR spectroscopy, a correlation
function with multiple correlation times ti and order param-
eters Si

2 [Eq. (1)] is often used to model dynamic processes
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especially for proteins, which is similar to and evolved from
the Lipari–Szabo model-free approach in solution-state NMR
spectroscopy.[4] As the coefficients and final term sum to one,
Equation (1) can be rewritten more simply as Equation 2.
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1�S2 determines the total motion, and Ai stands for the
contribution of an individual motion with correlation time ti.
Although the real correlation function may contain motion on
many time scales, limitations in the amount and precision of
experimental data typically restrict the model of the corre-
lation function to 1–3 exponential terms.

While the original model-free approach was well justified,
the modified solid-state correlation function was proposed
more ad hoc. This motivated us to reinvestigate its ability to
accurately represent protein motion in solids. First, we
investigated how well a model of the correlation function
describes the motion when the model is characterized by
fewer correlation times ti than the real correlation function,
which is probably the case in a typical analysis of protein
dynamics. We calculated relaxation-rate constants from
a simulated correlation function having 2–4 ti and fitted
those rate constants with a model having one ti less. In this
example, both longitudinal (R1) and transverse (R11) rate
constants were fitted, and all fits were performed both with
and without the total order parameter S2; the results are
summarized in Figure 1.

With the exception of Figure 1B, the data are well fitted
despite the model correlation function having fewer correla-
tion times than the input correlation function. If the data are
well fitted, the model should be a good representation of the
input correlation function. Therefore, each fitted ti should be
approximately the weighted average of the nearest ti from the
original correlation, and the amplitude ((1�S2)Ai) of each
term in the model should be approximately the sum of the
nearest input amplitudes.[4a] However, we found a model
having correlation times far from the average of the input
correlation times and fitted amplitudes that are quite differ-
ent from the sum of the nearest input amplitudes. Two-
dimensional plots of the error surface near the fit optima are
found in Figure 1 of the Supporting Information (SI), where
one sees that many of the fits have well-defined minima
despite failing to give a good representation of the input
correlation function. Adding an additional correlation time to
the model did not improve the situation, resulting in either
more fit parameters than observables or poorly defined fit
minima (SI, Figure 2).

To understand where the problems in modeling originate,
we took a simple set of experiments that we could fit using
a correlation function having only a single correlation time.
We assumed a log-uniform distribution of motion (we used
200 Ai values in Equation (2) that were all equal with ti
logarithmically spaced from 10�14 to 10�3 s) and calculated
three R11 rate constants. The spin-lock field strength was
5 kHz, and the spinning frequencies used for probing the
relaxation were 0.5wr

0, wr
0, and 1.5wr

0 where we varied wr
0.

The values of the three calculated R11 rate constants are
plotted against wr

0 in Figure 2A (lines), and were fitted
(circles) with a motion model that had only a single corre-
lation time tc. The correlation times and order parameters
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obtained are plotted in Figure 2B and C, respectively.
Although the input motion was always the same, the extracted
motion varies and is a near-linear function ofwr

0, where tc� 1/
wr

0. If we had generated the relaxation-rate constants using
a correlation function with only one correlation time, we
would have extracted that value (SI, Figure 3). As the fit
model contained fewer correlation times than the input
correlation function, the modeling failed. With a constant
distribution function as input tc was always extracted
approximately where the R11 experiments were most sensi-
tive.One finds motion where the “light” is better, that is, where
the experiment is most sensitive. If the motion is not uniform,
but still described by a correlation function more complex
than the model function, the fitted correlation times deviate
from where the experiment is most sensitive but are still
biased. This behavior can also be demonstrated for R1 (SI,
Figure 4). Since R1 and R11 are largely independent and
sensitive to correlation times at different time scales, a simul-
taneous fit of R1 and R11 data with a two-timescale model will
also result in correlation times where the two experiments are
most sensitive (SI, Figure 6). Again, one finds motion where

Figure 1. Fits of simulated relaxation data for 15N relaxation. In each plot, several relaxation-rate constants are simulated with 2, 3, or 4
exponentials (ti) in the correlation function (each described by ti and (1�S2)Ai). They are fitted with a model having one ti less than the input
data. Fits are performed without fitting 1�S2 in (A), (C), and (E) and with fitting 1�S2 in (B), (D), and (F). In (A) and (B) correlation functions
with 2ti (left plot, blue line) are input, and then fitted with a single ti (left plot, red line), where 3R1 measurements have been fitted. In (C) and
(D), 3ti are input and modeled with 2ti, where 3R1 and 1R11 measurements are fitted. In (E) and (F), 4ti are simulated and fitted with 3ti, where
3R1 and 3R11 are used in the fit. Bar plots show the calculated rate constants for the input motion, and black dots show the fit. The external field
for R1 measurements is indicated below the bar plots. The spin-lock strength for R11 measurements is also indicated below the bar plots (external
field: 850 MHz, magic angle spinning (MAS): 60 kHz).

Figure 2. Fitting behavior as a function of experimental settings. A
uniform distribution of motion was used to calculate three R11 rate
constants at different spinning frequencies (0.5wr

0, wr
0, and 1.5wr

0),
with the spin-lock field strength fixed at w1/2p=5 kHz. A) Calculated
rate constants (lines), which were well fitted with a monoexponential
correlation function (circles). The fitted correlation time (tc) is shown
in (B), and the amplitude, (1�S2), is shown in (C).
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the “light” is better.Adding S2 to the relaxation data makes the
fit more complex as discussed below.

Based only on the experimental measurement conditions,
it is possible to determine to which tc an experimental R11

data set is biased (see the SI). We did so for several dynamics
studies and compared the result to the reported tc values. The
biasing/reported tc for a number of studies are: HET-s(218–
289) 15N 17 ms/19 ms, HET-s(218–289) 13Ca 11 ms/7 ms,[5] ubi-
quitin (2-methyl-2,4-pentanediol (MPD) crystallization)
2.1 ms/1.5 ms (median value),[6] ubiquitin (PEG crystallization)
26 ms/20 ms (SI, Figure 5).[7] The good agreement between
these numbers suggests that the real motion is too complex to
be described with a mono-exponential correlation function,
so that results bias to where the experiments are sensitive.

Fitting one data type to a mono-exponential correlation
function represents a simple dynamics analysis of solid-state
NMR data. Many studies involve fitting multiple longitudinal
(R1) and transverse (R11, R2, etc.) relaxation-rate constants, as
well as REDOR-derived order parameters (S2). This allows
a correlation function with two correlation times to be fitted
(three, with multiple R11

[8]). Such studies report similar sets of
correlation times, typically near 10�10.5 s and 10�7.5 s (see
Table 1). This behavior also occurs in generated data sets (SI,

Figure 8). From the plot of R1 at several fields (lines in
Figure 3A) it is obvious that R1 rate constants are most
sensitive for tc� 10�8.5 s. This means that correlation times are
not near where “the light is better”, although the similarity of
the correlation times demands further investigation.

An interesting property of these correlation times is
revealed when a correlation function with the two ti values
fixed such that Equation (3) results is used. In this case,
a good fit of the threeR1 rate constants at all correlation times
is obtained by varying (1�S2)A1 and (1�S2)A2 (Figure 3A).

CðtÞ ¼ 1
5
ðð1�S2ÞðA1 expð�t=10�10:5 sÞ þA2 expð�t=10�7:5 sÞ þ S2Þ

ð3Þ

The possibility to fit three R1 rate constants with two fixed
correlation times also implies that one can fit any real motion
with multiple correlation times using a model that fixes ti=
10�7.5 s and 10�10.5 s. This holds relatively well for any pair of
correlation times with one time shorter than 10�10 s and one
time longer than 10�8 s (see the SI for details). We note that
the values of (1�S2)Ai are highest near 10�8.5 s, where R1 is
most sensitive. So, although the fitted correlation times are
not where “the light is better”, the greatest contributions to
the amplitudes in the correlation function come from themost
sensitive correlation times, with the unfortunate side effect

that, unlike in previous examples, our fitted ti values no
longer indicate where the experiment is sensitive.

Although these correlation times can fit any set of high-
field R1 data, the order parameter, S2, and transverse
relaxation-rate constants must also be fitted. Since these
analyses do not actually fix the ti values, one may simulta-
neously decrease the short ti and increase (1�S2)A1 (or vice-
versa) to fit S2 while leaving the fit of R1 nearly unchanged.
Similarly, one may increase the long ti and increase (1�S2)A2

to fit the transverse relaxation, also leaving R1 unchanged
(details in the SI). Then, one can fit motion resulting from
many correlation functions to a two-timescale correlation
function, when combining several R1 rate constants with S2

and a single transverse relaxation-rate constant. If the
dynamics are actually well described by a model with two ti,
the correct ti can be extracted, but if the dynamics are more
complex, the fit may bias towards these two “universal”
correlation times. The frequent occurence of fitted correlation
times around tc= 10�7.5 and 10�10.5 s in the literature suggests
either they have some physical significance or, maybe more
likely, are an artifact of fitting a complex dynamic process
with a simpler model.

We suspect that real protein motion is not well described
by a correlation function having only two to three correlation
times. However, if the real motion can have an arbitrary
number of correlation times, then different distributions of
correlation times will lead to identical relaxation data. This is
shown in Figure 4A–C, where three distributions of motion
produce almost exactly the same set of relaxation data (5R11,
3R1, 1 S2). In Figure 4D a model having three correlation

Table 1: Median fast (tf ) and slow (ts) correlation times for various
proteins studied with solid-state NMR spectroscopy.

SH3[9] Ubiquitin[10] GB1[11] HET-s[5]

ts 10�7.6 s 10�7.3 s 10�6.4 s 10�7.4 s
tf 10�10.7 s 10�10.4 s 10�10.5 s 10�10.7 s

Figure 3. R1 rate constants fitted with the correlation function given in
Equation (3). A) Plots of R1 rate constants (at fields of 400, 500, and
850 MHz) for monoexponential correlation functions versus correla-
tion time, tc, where (1�S2)=1, and circles indicating fits at each tc
using Equation (3). B) Weighting of the two terms in Equation (3),
with the positions of the ti values marked as dotted lines.
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times is fitted to the relaxation data, yielding a good, but not
perfect fit.

When the real motion is more complex than that of the
model, the model biases towards correlation times that are
more sensitive—where “the light is better”. Furthermore,
when the motion is complex, there is necessarily ambiguity in
the data from which the dynamical information is extracted.
Therefore, we introduce the concept of a dynamics detector,
which contains information only where the light is. A detector
reports on the average or total amplitude of motion for
a range of correlation times, as opposed to returning an exact
amplitude at a specific correlation time—therefore not
requiring a specific model of the correlation function. Using
multiple such detectors each of which characterizes protein
motion on a different timescale, protein dynamics can be
described without bias. In addition, there are only detectors
where the dynamics experiments are sensitive.

Equation (4) gives a definition of a detector response
calculated from dynamics data. (1�S2)q(tc) describes the
distribution of motion in the protein, that is the contribution
of each tc to the total motion. The detector takes the sum of

1ðq;SÞ ¼ 1� S2
� � Z

1

0

q tcð Þ1 tcð Þdtc ð4Þ

motion at each tc, multiplied by the sensitivity to that
correlation time, defined by 1(tc), to yield the detector
response (1(tc) is known). A relaxation-rate constant is by this
definition a detector, where the sensitivity of the rate constant
to different correlation times determines how the rate
constant responds to a distribution of motion (the traces in
Figure 3A are sensitivities, 1(tc), of R1).

Ideally detectors would have a narrower sensitivity than
the relaxation rate constants and so give more precisely the
range of correlation times contained in the motion. A
detector can be constructed from a linear combination of
relaxation data; for example, multiple R1 rate constants may
be combined to obtain multiple detectors with narrower
ranges (SI, Figure 9). Previous work along these lines exist:
spectral-density mapping was performed by taking linear
combinations of relaxation data and yielded sensitivities
defined by the spectral densities at specific frequencies,
J(w,tc).

[12] LeMaster created detectors by fixing multiple ti to
carefully chosen values[13] (see also Ref. [14]). However, these
cases require specific sets of measurements. A generalized
method for designing detectors, and investigation of proper-
ties of those detectors for a variety of data sets, will be
presented in a separate report.

In conclusion, NMR dynamics data should be analyzed
with great care to yield a picture of protein dynamics that is
not biased by selecting a particular correlation function.
Based on initial detector analysis, and resulting trends
throughout a protein, it may make sense to then introduce
a more specific model. However, as we have shown here, we
should be aware that modeling can bias our results towards
where “the light is better”, and should be suspicious of models
describing motion where there is little light.
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