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Glossary of terms 

Name Symbol Units Description 

Correlation 

time 
  s Correlation time of some motion in the system. 

Log-correlation 

time 
z 

unitless 

(vs. 1 s) 
Base-10 logarithm of the correlation time, given by 

.  

Rotational 

diffusion 

correlation time 

  s Correlation time of isotropic rotational of a molecule 
in solution (tumbling). 

Log-   zr 
unitless 

(vs. 1 s) 
Base-10 logarithm of the rotational correlation time, 
given by   

Effective 

correlation time 
  s 

Effective correlation of an internal motion, where the 
molecule is undergoing tumbling with correlation 
time, . Given by . 

Log-effective 

correlation time 
  

unitless 

(vs. 1 s) 
Base-10 logarithm of the effective correlation time, 
given by . 

Distribution of 

motion 

 

 
unitless 

Describes how motion is distributed as a function of 
correlation time, where z = log10(τc /1 s). (1–S2) 
gives the total amplitude of motion, so that θ(z) 
always integrates to one. 

Distribution of 

internal motion 
 unitless 

This is the same as the distribution of motion for 
solid-state analysis. In solution-state analysis, this 
distribution only accounts for internal motion of the 
molecule- in other words, tumbling of the molecule 
is factored out, and the log-correlation times are not 
effective correlation times (see SI section 1 for 
comparison of distributions). 

Distribution of 

total motion 
  unitless 

This is the distribution of all motions for a molecule 
tumbling in solution, including the tumbling itself. 
Motion resulting from internal motion is modified to 
have an effective correlation time, zeff, which results 
from the internal correlation time and the tumbling 
correlation time see SI section 1 for comparison of 
distributions). 

 τ c

  log10(τ c / 1 s)

 τ r

 τ r

  zr = log10(τ r / 1 s)

 τ eff

 τ r  
τ eff = τ rτ c τ r + τ c( )

 zeff

  log10(τ eff / 1 s)

  (1−S2)θ(z)

  (1−S2)θ(zi )

  θ tot.(z)
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Relaxation rate 

constant 
 s-1 

The relaxation-rate constant obtained under 
experimental conditions denoted by ζ, for a 
distribution of motion (1–S2)θ(z). May be obtained 
by integrating the product of the sensitivity of that 
rate constant, Rζ(z), times the distribution of motion, 
(1–S2)θ(z). 

Sensitivity  s-1 
The relaxation rate constant obtained under 
experimental conditions denoted by ζ, for a mono-
exponential correlation function, having correlation 
time τc = 10z s, and amplitude 1–S2 = 1. 

Solution-state 

sensitivity 
  s-1 

Sensitivity of an experiment to the internal motion of 
a molecule, with , when the molecule is 
tumbling in solution. This function has one term to 
account for attenuation of relaxation due to 
rotational diffusion, and a second term to account 
for relaxation induced by the internal motion, given 
as . 

Detector – – A mathematical tool used to quantify the amount of 
motion for a range of correlation times. 

Detector 

sensitivity 
 unitless 

Defines how a detector responds to a particular 
correlation time, τc = 10z s. Its value as a function of 
z is obtained by taking a linear combination of rate 
constant sensitivities (using the same linear 
combination as is used to obtain the detector 
responses). 

Detector 

response 
 unitless 

A quantity, describing the amount of motion for a 
particular range of correlation times, rigorously 
defined as the integral of the product of the detector 
sensitivity, ρn(z), and the distribution of motion, (1–
S2)θ(z). Obtained by taking an appropriate linear 
combination of experimental rate constants (strictly 
speaking, by fitting a vector of the rate constants to 
the detection vectors, ). 

Normalized 

rate constant  unitless 

The relaxation rate constant divided by some 
normalization constant, cζ, to yield a dimensionless 
relaxation rate constant. For solution state 
relaxation, we first subtract away the relaxation rate 
constant obtained for an internally rigid motion, , 

such that .  

Allowed region – – 

For a given set of experiments, the allowed region 
is all sets of rate constants ( ) that can be 
obtained for any arbitrary distribution of motion, 
given by (1–S2)θ(z). Usually this space is 
represented in terms of the . 

  
Rζ

(θ ,S)

  
Rζ (z)

  
Rζ

solu(zi)

  τ i = 10zi ⋅1 s

  
Rζ

solu.(zi ) = Rζ (zeff (zi ))−Rζ (zr )

  ρn(z)

  ρn
(θ ,S)

 
!rn

  
ℜζ

(θ ,S)

  
Rζ

0

  
ℜζ

(θ ,S) = (Rζ
(θ ,S) −Rζ

0) / cζ

  
Rζ

(θ ,S)

  
ℜζ

(θ ,S)
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Detection 

vector  s-1 

A vector containing carefully chosen values of the 
, so that a vector containing the full set of 

experimentally determined relaxation rate constants 
is assumed to be a linear combination of all 
detection vectors, given by .  

Sum of 

normalized rate 

constants 

  unitless 

Sum of all normalized rate constants for an 
experimental data set, used for calculating the ratio 
of rates. Note that for the reduced space for internal 
motion (solution-state), this term is replaced, often 
by , where the corresponding sensitivity, 

, remains negative for all correlation times 
(see main text, Eq. (22)). 

Ratio of rates   unitless 

For experimental conditions denoted by ζ, this is the 
ratio of the normalized rate constants, , 
divided by the sum of normalized rate constants, 

, which is used for defining positions in the 
reduced space. 

Reduced space – – 

For a set of experiments, the reduced space is 
defined by the ratios of rates, κζ, for that set of 
experiments. The dimensionality of this space is 
one less than the number of experiments- achieved 
by omitting one of the experiments when calculating 
the κζ.  

Reduced vector   unitless 

Vector of ratios of rates, κζ, defining a position in the 
reduced space. These positions can be used to 
define detection vectors, although note that the 
reduced vector only defines the direction of the 
detection vector, but not the length. 

Effective width   
unitless 

(vs. 1 s) 

The effective width of a detector is defined as the 
detector integral divided by its maximum, given on a 
base-10 log scale.  

  

Detector center   
unitless 

(vs. 1 s) 

This gives the center of the detector sensitivity, on a 
logarithmic scale (unitless, with reference to 1 s 
using a base-10 log). Defined as follows: 

  

 

  
!
rn

  
Rζ

(θ ,S)

   ρ1
(θ ,S)!r1 + ρ2

(θ ,S)!r2 + ...

  
Σζℜζ

(θ ,S)

  
−ℜζ

(θ ,S)

  
Rζ (z)

κζ
  
ℜζ

(θ ,S)

  Σℜ(θ ,S)

 
!
κ

 Δzn

  
Δz = ρn(z)dz∫ max(ρn(z))

  zn
0

  
zn

0 = zρn(z)dz∫ ρn(z)dz∫
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1. Distribution of the total motion vs. distribution of internal motion 

In the case of a molecule tumbling isotropically in solution, we may assume that the total 

correlation is a product of the correlation function of the internal motion and the correlation 

function of the tumbling, such that 

. (S1) 

Here, we write correlation function of the internal motion as  

,
 (S2) 

where (1–S2)θ(zi) describes the distribution of internal motion (we use zi to distinguish the 

correlation time of the internal motion from zeff, which appears in the next equation as the 

effective correlation time). The product of the two correlation functions then yields 

.
 (S3) 

One notes, however, that this correlation function is still a sum of decaying exponential terms, 

although with modified correlation times (given by ). Therefore, we can 

analyze relaxation arising from such a correlation function using the detector analysis as 

derived for solid-state NMR,1 however, we will not characterize the distribution of internal 

motion, (1–S2)θ(zi), but rather some distribution of the total motion, θtot.(z),such that 

,
 (S4) 

where the correlation functions in Eqs. (S3) and (S4) are equal. Note that due to the tumbling, 

the total motion is isotropic, so that (1–S2) in this case equals 1, and is therefore omitted from 

Eq. (S4). We will see during the following derivation, that the z appearing in this equation may 

denote a log-effective correlation time, zeff, or log-correlation time for the tumbling, zr, so that 

we simply denote this variable as z. 

  

C(t) = CO(t)CI(t)

CO(t) = 1
5

exp(−t / τ r )

  
CI(t) =

1
5

S2 + (1−S2) θ(zi )exp(−t / (10zi ⋅1 s))dz
−∞

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

C(t) = 1
5

S2 exp(−t / τ r )+ (1−S2) θ(zi )exp(−t / (10zeff (zi ) ⋅1 s))dzi
−∞

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

τ eff (zi ) =
(10zi ⋅1 s)τ r

(10zi ⋅1 s)+ τ r

,  zeff (zi ) = log10(τ eff (zi ) / 1 s)

  zeff (z) = log10(τ eff / 1 s)

  
C(t) = 1

5
θ tot.(z)exp(−t / (10z ⋅1 s))dz

−∞

∞

∫
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 Then, we would like to know the relationship between (1–S2)θ(zi) and θtot.(z) for a 

molecule tumbling with correlation time . We do so by rearrangement of Eqs. (S3) and (S4). 

To begin, we define , where . Inserting into Eq. 

(S4), we obtain 

,
 (S5) 

Addition of the δ-function has produced the first term in Eq. (S3), so that by setting Eqs. (S3) 

and (S5) equal, we may obtain 

.
 (S6) 

Then, we see that the z in the right side of this equation must be equal to zeff(zi) if the two 

integrals are equal. Thus, we simply replace all z with zeff on the right side 

,
 (S7) 

followed by changing the integration variable on the left side to zeff. To do so, we need to 

obtain zi and dzi in terms of zeff, and furthermore adjust the integration bounds. 

From the definition of  (Eq. (S3)), we start with 

,
 (S8) 

Next, we find the upper and lower bounds of the integral 

 τ r

  ′θ tot.(z)+S2δ (z = zr ) = θ tot.(z)   zr = log10(τ r / 1 s)

  

C(t) = 1
5

θ 'tot.(z)+S2δ (z − zr )( )exp(−t / (10z ⋅1 s))dz
−∞

∞

∫

= 1
5

S2 exp(−t / τ r )+ θ 'tot.(z)exp(−t / (10z ⋅1 s))dz
−∞

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  
(1−S2) θ(zi )exp(−t / (10zeff (zi ) ⋅1 s)dzi

−∞

∞

∫ = ′θ tot.(z)exp(−t / (10z ⋅1 s))dz
−∞

∞

∫

  
(1−S2) θ(zi )exp(−t / (10zeff (zi ) ⋅1 s)dzi

−∞

∞

∫ = ′θtot .(zeff )exp(−t / (10zeff ⋅1 s))dzeff
−∞

∞

∫

 τ eff

  

τ eff = 10zeff =
10zi ⋅τ r

10zi + τ r

= 10zi+zr

10zi +10zr

10zeff (10zi +10zr ) = 10zi ⋅10zr

10zi = 10zeff ⋅10zr

10zr −10zeff

zi = zeff + zr − log10(10zr −10zeff )

dzi = dzeff + dzeff

10zeff

10zr −10zeff
= dzeff

10zr

10zr −10zeff
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,
 (S9) 

Plugging in, we obtain 

,
 (S10) 

We see that we may satisfy the equality with the following definition for :  

,
 (S11) 

Finally, we may calculate : 

,
 (S12) 

Note that for the case z=zr, this is no longer an effective correlation time, but simply the log-

correlation time of the tumbling, so that we define this function in terms of a general log-

correlation time, z, as opposed to zeff.  

 One sees that the result is reasonable. A δ-function introduces the relaxation due to 

tumbling into the total distribution, so the integral of this term results in the correct amplitude, 

S2. The effective correlation time cannot exceed the correlation time of the tumbling, so the 

total distribution becomes zero for z>zr. At very short correlation times, the total distribution 

becomes equal to the distribution of internal motion ( , ). 

As the correlation time of the total distribution approaches the rotational correlation time, one 

uses the effective correlation time in the distribution of internal motion, and further scales up 

the distribution, since one integrates over a narrower range of correlation times. Fig. S1 

illustrates this for two distributions: 

  

Lower bound: 
zi = −∞,

10zeff = 10−∞+zr

10−∞ +10zr
= 0

zeff = −∞

,

Upper bound:
zi = ∞

10zeff = 10∞+zr

10∞ +10zr
= 10zr

zeff = zr

  

(1−S2) θ(zeff + zr − log10(10zr −10zeff ))exp(−t / (10zeff ⋅1 s)
10zr

10zr −10zeff
dzeff

−∞

zr

∫

= ′θ tot.(zeff )exp(−t / (10zeff ⋅1 s))dzeff
−∞

∞

∫

  ′θ tot.(z)

  

′θ tot.(zeff ) =
(1−S2)θ(zeff + zr − log10(10zr −10zeff ))

10zr

10zr −10zeff
, zeff < zr

0 z ≥ zr

⎧

⎨
⎪

⎩
⎪

  θ tot.(z)

  

θ tot.(z) =
(1−S2)θ(z + zr − log10(10zr −10z ))

10zr

10zr −10z
, z < zr

S2δ (z − zr ) z = zr

0 z > zr

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  log10(10zr −10z ) = zr   10zr / (10zr −10z ) = 1
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Fig. S1. Distributions of internal motion vs. distribution of total motion. Subplots (a)–(c) each show a distribution of 
the internal motion ((1–S2)θ(zi): blue, dashed line) and the resulting total distribution of motion (θtot.(z): red, solid 
line), assuming a rotational correlation time of . (a) shows a uniform distribution for the internal 
motion, (b) a distribution resulting from three log-Gaussian distributions for the internal motion, and (c) shows 
three narrow distributions for the internal motion. Note that at the rotational correlation time, the distribution of 
total motion diverges to infinity (δ-function), and then falls to zero for all z>zr.  

2. Singular-value decomposition approach to detector optimization 

2.1. Designing the detectors 

For large data sets, the ‘spaces’ method of detector optimization recently developed becomes 

increasingly challenging, although is nonetheless very powerful for visualization of the 

information content of relaxation data.1 Therefore, we introduce an alternative approach here, 

which utilizes reduced singular-value decomposition (SVD).2 We begin with a matrix, M, which 

contains the normalized rate constants for a range of correlation times, for example 

 τ r = 4.84 ns
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.  (S13) 

where the ζ, φ, ξ are different experimental conditions, and the zi are elements of a vector of 

correlation times (log-spaced over the full range of experiment sensitivity, see Fig. S2(a) for an 

example). Note that ideally, normalization is done with the standard deviation of that 

experiment, and in the case of multiple residues, we use the median of the standard deviation 

(otherwise, we normalize the sensitivity with the maximum of its absolute value). 

.  (S14) 

Then, SVD returns three matrices, such that 

,  (S15) 

where, if M is an mxn matrix, then U is an mxm unitary matrix (U-1=U’, columns of U form an 

orthonormal basis), V is an nxn unitary matrix, and Σ is a diagonal mxn matrix with non-

negative, real numbers on the diagonal. Here, we will typically use the truncated SVD, such 

that 

,  (S16) 

where  is the closest approximation to M, possible with a matrix of rank t (Σt contains the t 

largest eigenvalues of Σ). Then, Ut is an mxt matrix, Σt is a txt diagonal matrix, and Vt’ is a txn 

matrix.  

 In principle, we could define the columns of (UtΣt) as our detection vectors (after re-

normalization by the cζ), and the rows of Vt’ as the corresponding sensitivities. However, we 

see in Fig. S2(b), that the rows of Vt’ are not well-separated sensitivities. This is straightforward 

to remedy– we simply take linear combinations of the rows of Vt’ that are optimally separated. 

An example of such linear combinations is shown in Fig. S2(c).  

  

    

M =

ℜζ (z1) ℜζ (z2) ! ℜζ (zn)

ℜψ (z1) ℜψ (z2) ! ℜψ (zν )

" " # "
ℜξ (z1) ℜξ (z1) ! ℜξ (z1)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  

ℜζ (z) = Rζ (z) / cζ

cζ = median(σ (Rζ ))

 M = U ⋅ Σ ⋅ ′V

   
!M = Ut ⋅ Σ t ⋅ ′Vt

  !M
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Fig. S2. Steps in the singular-value decomposition procedure. Example here are R2, R1, and NOE experiments at 
600, 800, and 950 MHz. (a) shows rows of the matrix, M, which are the sensitivities of the different experiments 
for a range of correlation times, here normalized by the median standard deviation of that experiment type (taken 
from 3). Note that  is also shown as grey lines (Eq. (S16), for truncated SVD of rank 4), although strongly 
overlaps with M so it is not always visible. (b) shows the rows of V’, for a truncated SVD of rank 4. (c) shows the 
detector sensitivities, obtained from linear combinations of the rows of V’, given by TV’. 

 We denote this transformation as  

,  (S17) 

where T is a transformation matrix, for which each row defines a linear combination of the rows 

in Vt’ to yield one of the detector sensitivities, ρn(z). Assuming that the t rows of T are linearly 

independent, then T-1 is well-defined, so that one obtains  

.  (S18) 

If we renormalize , by multiplying by a diagonal matrix, c, which has the normalization 

constants, cζ, along its diagonal we can obtain a matrix that contains the detection vectors 

along its columns, here referred to as r. 

.  (S19) 

  !M

   
ρn(zm) = [T]n,i [V]i,m

i=1

t

∑

    
!M = Ut ⋅ Σ t ⋅T

−1 ⋅T ⋅ ′Vt

  !M

   r = c ⋅Ut ⋅ Σ t ⋅T
−1



 12 

Then, the vector of experimental rate constants is fitted to 

.  (S20) 

where the  are variable, or, in matrix form, we solve 

  (S21) 

where the |…|2 indicates the 2-norm.  Note that we restrict the  such that 

 when solving.  

 We still must optimize T, to give well-separated detector sensitivities. We do so by 

choosing a target function for each detector ( ), and minimizing 

,  (S22) 

This has been implemented in the DIFRATE software,4 as an interactive program with several 

options for the target function (‘SVD_inter.m’), or as a command-line function that takes any 

user-defined target function (‘SVD_target.m’). 

2.2. Standard deviation of detectors determined from the singular values 

We can estimate the standard deviation of each detector for a given data set, using the 

singular values. One notes that, if we neglect the requirement that  

then the solution to Eq. (S21) is given by 

.  (S23) 

Since this results in a simple linear combination of the experimental rate constants, we can use 

the usual propagation-of-error rules to obtain the standard deviation of the detectors (if

   
min

Rζ
exp. − [r ]ζ ,nρn

(θ ,S)( )2

σ (Rζ )2
n
∑

ζ
∑

  ρn
(θ ,S)

    

min

[r ]ζ ,1 /σ (Rζ ) [r ]ζ ,2 /σ (Rζ ) ! [r ]ζ ,n /σ (Rζ )

[r ]ψ ,1 /σ (Rψ ) [r ]ψ ,2 /σ (Rψ ) ! [r ]ψ ,n /σ (Rψ )

" " # "
[r ]ξ ,1 /σ (Rϕ ) [r ]ξ ,2 /σ (Rϕ ) ! [r ]ξ ,n /σ (Rϕ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⋅

ρ1
(θ ,S)

ρ2
(θ ,S)

"
ρn

(θ ,S)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

Rζ
exp. /σ (Rζ )

Rψ
exp. /σ (Rψ )

"
Rξ

exp. /σ (Rξ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

2

  ρn
(θ ,S)

  minρn(z) ≤ ρn
(θ ,S) ≤ max ρn(z)

  ρn
target (zm)

   
[T]n,i [V]i,m

i=1

t

∑⎛⎝⎜
⎞
⎠⎟
− ρn

target (zm)
2

m
∑

  minρn(z) ≤ ρn
(θ ,S) ≤ max ρn(z)

    

ρ1
(θ ,S)

ρ2
(θ ,S)

!
ρn

(θ ,S)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

[r ]ζ ,1 /σ (Rζ ) [r ]ζ ,2 /σ (Rζ ) " [r ]ζ ,n /σ (Rζ )

[r ]ψ ,1 /σ (Rψ ) [r ]ψ ,2 /σ (Rψ ) " [r ]ψ ,n /σ (Rψ )

! ! # !
[r ]ϕ ,1 /σ (Rϕ ) [r ]ϕ ,2 /σ (Rϕ ) " [r ]ϕ ,n /σ (Rϕ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−1

⋅

Rζ
exp. /σ (Rζ )

Rψ
exp. /σ (Rψ )

!
Rϕ

exp. /σ (Rϕ )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟



 13 

, then  assuming zero covariance). If we take 

M to be the inverse matrix in SI Eq. (S23), then variances for each detector are given by 

.  (S24) 

The experiments are already normalized by their own standard deviations, so that the variance 

contribution from each experiment to the detector is just (1)2. Then the variance for each 

detector is simply the sum of the elements in the corresponding row of the inverse matrix (sum 

over all experiments, ζ). If we substitute the cζ for the σ(Rζ) in this matrix (the cζ are just the 

median of the residue specific σ(Rζ), so this will change the result slightly, but is a good way to 

understand the general behavior- see SI Eq. (S19)), the matrix inverse is given by  

.  (S25) 

Then, the variance for a given detector is given by the 2-norm of the corresponding row of this 

matrix: 

  (S26) 

We may simplify this equation by first separating the matrix product into two parts (  and 

), inserting a sum over the t singular values, and multiplying out  (which is 

straightforward since  is diagonal) 

  (S27) 

We then expand the squared term, to obtain 

  (S28) 

 r = ax + by + cz   σ
2(r ) = a2σ 2(x)+ b2σ 2(y)+ c2σ 2(z)

   
σ 2(ρn) = (Mn,ζ )2(1)2

ζ
∑

   
M = Ut ⋅ Σ t ⋅T

−1( )−1
= T ⋅ Σ t

−1Ut '

   
σ 2(ρn

(θ ,S)) = TΣt
−1Ut '⎡⎣ ⎤⎦n,ζ

2

ζ
∑

   TΣt
−1

   Ut '    TΣt
−1

  Σt
−1

   

σ 2(ρn
(θ ,S)) = [TΣt

−1]n,i [Ut ']i,ζ
i=1

t

∑⎡
⎣
⎢

⎤

⎦
⎥

ζ
∑

2

TΣt
−1⎡⎣ ⎤⎦n,i

= Tn,i [Σt
−1]i,i

σ 2(ρn
(θ ,S)) = Tn,i [Σt

−1]i,i [Ut ']i,ζ
i=1

t

∑⎡
⎣
⎢

⎤

⎦
⎥

ζ
∑

2

   

σ 2(ρn
(θ ,S)) = Tn,i [Σt

−1]i,i [Ut ']i,ζ
i=1

t

∑⎡
⎣
⎢

⎤

⎦
⎥
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t
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The rearrangement of the summation order allows us to first sum over the ζ, and because the 

columns of Ut are orthonormal, this yields 1 for the inner sum, , if i=j, and 0 

otherwise. Therefore, we obtain for the variance 

  (S29) 

Then, the variance of each detector depends on the squared inverse of the singular values 

with weighting determined by the corresponding row of the T matrix. Note that this slightly 

over-estimates the error, because when actually fitting, one enforces that 

. Without this requirement, experimental noise can push the 

detector responses outside this range, so that enforcing this requirement removes any such 

noise that would push the detector responses outside this range.  

2.3. Selecting the number of detectors  

Selecting greater or fewer numbers of detectors has a number of effects. More detectors will 

yield a better fit of the initial data set. It will also allow one to obtain detector sensitivities 

covering a narrower range of correlation times. However, inclusion of more detectors also 

means that one will have smaller singular values in the matrix , which we can see in Eq. 

(S29), yields higher error for the detector responses because of the inclusion of inverse of the 

singular values, . For an example, we take R1 and NOE rate constants at 600, 800, and 

950 MHz, and R2 rate constants at 950 MHz, assuming a rotational correlation time of τr=4.84 

ns. We then calculate, for different numbers of detectors, the quality of fit of each rate constant 

vs. correlation time, an optimized set of detectors, and the resulting standard deviation of each 

detector (we will assume that the standard deviation of each measurement 5% of the 

maximum of the absolute value of the sensitivity). One sees that, in this case, the fit converges 

when using ~4 detectors, whereas using more detectors yields negligible improvement in the 

fit, and the standard deviation for each detector grows significantly. 

   ζ [Ut ]ζ ,i [Ut ]ζ , j∑

   
σ 2(ρn

(θ ,S)) = Tn,i [Σt
−1]i,i( )2

i=1

t

∑

  minρn(z) ≤ ρn
(θ ,S) ≤ max ρn(z)

 Σt

  [Σ]i,i
−1
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Fig. S3. Selection of the number of detectors. Each row uses the number of detectors indicated above the row to 
fit the set of experiment rate constants. The left column shows the sensitivities of 3 R1 rate constants (600, 800, 
950 MHz), 3 NOE rate constants (600, 800, 950 MHz), and 1 R2 rate constant (950 MHz) as colored, dashed 
lines. Fits of those rate constants using the indicated number of detectors, is shown as solid, grey lines. The 
middle column shows an optimized set of detectors. The right column shows the standard deviation of each 
detector, assuming a standard deviation for each rate constant that is 5% of the maximum of the absolute value of 
the rate constant sensitivity. Inset on some plots shows the same information, scaled up for visibility. 
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3. Ubiquitin analysis at 2 fields  

We calculated Ubiquitin dynamics analysis for a data at two fields (600 and 800 MHz, with R1, 

R2, and NOE data). This is analyzed with 4 detectors, assuming an overall rotational 

correlation time, τr, of 4.84 ns. The results are shown in Fig. S4. Note that we do not treat 

exchange in this example (compare to main text Fig. 9) 

 
Fig. S4. Ubiquitin detector analysis using two fields (R1, R2, NOE at 600 and 800 MHz fields). (a) shows the 
detector sensitivities, (b) gives the residue-specific detector responses for each of the four detectors. Data fit is 
shown in Fig. S8, and detection vectors used are given in SI Table S3. 

4. Model selection for dynamics detectors 

In SI section 2.3, the effect of the number of detectors used on fitting and error is discussed. 

However, this does not tell one how many detectors is best to use. Therefore, we to try to 

verify that the chosen number of detectors for modeling a particular data set is the best choice, 

we utilize statistical model selection, via the Akaike Information Criterion (AIC), as well as 

several variants of this statistical test.5 The AIC parameter is defined as 

.  (S30) 

where χ2 is given by 
  AIC = N ln(χ 2 / N)+ 2K
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,  (S31) 

and N is the total number of experiments, and here K is the number of detectors. Model 

selection is performed by calculating the AIC parameter and selecting the model with the 

smallest value.  

 The AIC assumes a large number of experiments so that it may be biased except in the 

case that N>>K, which is clearly not the case for NMR relaxation studies, possibly resulting in 

selecting a model that has too many parameters. To counter this, one may use the corrected 

AIC parameter (AICc),6,7 defined as 

,  (S32) 

but the correction term is nonetheless not always correct in the case that restrictions are 

placed on the fitting parameters,8 as we do when requiring non-negative values for the 

detector responses. Therefore, we additionally test corrections to the AIC obtained via 

bootstrapping of the fit.9 In particular, we use the AICb1 and AICb2 developed by Shang and 

Cavanaugh,10 and the 632BQCV statistic developed by Bayer and Cribari-Neto.8 We calculate 

the variants of the AIC parameter using data for Ubiquitin acquired at three fields (detector 

analysis with four detectors found in main text Fig. 9(d)). The results of the AIC tests are 

shown in Fig. S5.  

 
Fig. S5. Various AIC parameters as a function of the number of detectors for the analysis of backbone H–N 
motion in Ubiquitin. A 3 field (600, 800, 950 MHz) data set with R1, R2, and σNH is used. The median AIC value is 
reported, for all residues. 

  
χ 2 =

Rexper .
i −Rcalc.

i( )2

σ i
2

i=1

N

∑

  
AICc = N ln(χ 2 / N)+ 2K + 2 K(K +1)

(N −K −1)
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 The AIC selects 5 detectors, whereas the AICc selects only 3 detectors. However, we 

see that the AICc rises severely for larger number of detectors, in contrast to all other tests. 

The bootstrap tests (AICb1, AICb2, 632BQCV) do not show a strong preference among 

models with 4-8 detectors. These tests should be the most reliable since they adapt the AIC 

correction factor to the specific model behavior based on bootstrap tests. This behavior 

indicates that as the model increases in complexity, the detector responses contain both more 

information about the internal motion, but also more noise, such that the models are ultimately 

of similar quality. Then for detector analysis, one could make the model selection simply based 

on what one considers an acceptable level of noise on the detector responses. In any case, we 

see that AICc analysis is not really suitable for model selection for detector analysis, and 

although the AIC gives similar results to the more rigorous bootstrapped tests, it is not clear 

that this will always be the case. Then, since AIC takes the assumption that the data set is 

infinitely large, it is likely better to also avoid this test. 

 Note that it is not straightforward to obtained a bootstrapped data set from NMR data. 

Typically, when performing a bootstrap, one takes the original data set, and resamples it 

randomly, to obtain the bootstrapped data set. However, for relaxation data, this would result in 

some rate constants being left out entirely, so that our detector responses are not necessarily 

defined for some possible bootstrapped data sets. This makes this basic approach unfeasible, 

so that we instead resample the error of our fits. Specifically, we take the initial fit to our 

detectors, back-calculate the rate constants, and calculate the fitting error for each experiment.  

,  (S33) 

Here, i indicates an experiment of the full data set. Then, the bootstrapped data set is given for 

all rate constants as 

,  (S34) 

where the index j is selected at random from all experiments in the data set with replacement, 

and the error is re-scaled according to the standard deviation of the experiment. 

5. Model-free failure of one- and two-field data sets 

As was done with a large relaxation data set in Fig. 1 (main text), it is possible to demonstrate 

that the model-free approach may not yield a good representation of the true motion in the 

case of smaller, one- and two-field data sets. We calculate relaxation rate constants here (R1, 

   
Rexper .

i = Rcalc.
i + εi

   
Rbootstrap.

i = Rcalc.
i + εj

σ i

σ j
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R2, σNH) for motions having three correlation times, such that the correlation function is given 

by: 

,  (S35) 

where , and the Ai add to 1. Then, for relaxation rate constants calculated at one 

field (600 MHz), we fit the data to a correlation function with one internal motion (2 parameter 

fit): 

,  (S36) 

or two internal motions.  

,  (S37) 

Here, we assume the second internal motion is sufficiently fast that it does not directly induce 

any relaxation, so that its value may be fixed to some arbitrarily small value ( , three-

parameter fit). Finally, when fitting data with two fields, we use the same correlation function, 

but allow both correlation times to vary (4 parameter fit). 

  
C(t) = 1

5
exp(−t / τ r ) S2 + (1−S2) Ak exp(−t / τ k )

k=1

3

∑⎡

⎣
⎢

⎤

⎦
⎥

  τ r = 4.84 ns

  
C(t) = 1

5
exp(−t / τ r ) S2 + (1−S2)exp(−t / τ1)⎡⎣ ⎤⎦

  
C(t) = 1

5
exp(−t / τ r ) S2 + (1−S2)(A1exp(−t / τ1)+ A2 exp(−t / τ 2))⎡⎣ ⎤⎦

 τ1 = 10−14  s
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Fig. S6. Two correlation functions (example 1: (a), (c) and example 2: (b), (d)) are used to calculate R1, R2, and 
σNH rate constants at one (600 MHz: (a) and (b)) and two fields (600, 800 MHz: (c) and (d)). The correlation 
functions are given as line plots in the top of each subplot (red lines, giving the correlation time, , and 
amplitude, (1–S2)Ak, of each motion), assuming a rotational correlation time of   The resulting rate 
constants are shown as colored bars in each subplot. These rate constants are then fit to models having 2, 3, or 4 
free parameters (see SI Eqs. (S33) and (S34)). The resulting fit parameters are given as blue lines in the top of 
each subplot, and the fitted rate constants are shown as scatter points in the bottom of each subplot. In (a), the 
motion is fit both with a two- and three-parameter model. The results for the three-parameter model are shown as 
dotted lines in the top plot. Since no correlation time is fitted for the faster motion (it is fixed to ), it is 

shown as a horizontal line extending from  to shorter correlation times. 

 We see in Fig. S6 that although the data is well-fit in all cases, the fit of the internal 

motion is usually far away from the input motion, as we expect when the model is simpler than 

 τ k

 τ r = 4.84 ns

 τ1 = 10−14  s

  τ c = 10−11 s
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the real motion (note that in Fig. S6(d), the fitted amplitude of the shorter correlation time is 

approximately the sum of the amplitudes of the two shorter correlation times, and the fitted 

correlation time converges on the average of these two correlation times, as expected when 

both motions are in the extreme narrowing limit11). Note that in Fig. S6(a), the two parameter 

yields fitted rate constants that have deviated somewhat from the input, so that we also fit with 

three parameters, yielding an improved fit of the rate constants. 

 We may also investigate how well the order parameter of the internal motion is 

estimated. We tabulate the input and fitted order parameters. We see that the fitted order 

parameter is always greater than or equal to the fitted order parameter, and note that as the 

model complexity increases, the accuracy of the order parameter improves (assuming that 

using a more complex model is justified by poor fit quality of a simpler model). Such a result is 

expected since tumbling partially or completely masks motions with correlation times 

comparable to or longer than . Note that if a motion is not completely masked, then one can 

improve the estimation of the order parameter by using a more complex model (and including 

more data in the fit as necessary).  
Table SI. Input vs. fitted order parameters (S2) for each example and fit. 

 Input S2 (Ex. 1) Fit S2 (Ex. 1) Input S2 (Ex. 2) Fit S2 (Ex. 2) 

1 field, 2 pars. 0.600 0.743 0.750 0.769 

1 fields, 3 pars. 0.600 0.673 0.750 0.751* 

2 fields, 4 pars. 0.600 0.638 0.750 0.750 
*Fit not shown in Fig. S6 

6. Plots of data fits 

 
Fig. S7. Data fit of ubiquitin using only one B0 field (from analysis shown in Fig. 7B). Each plot shows rate 
constants for the experiment type shown on the axis (where the field is given in parenthesis). Cyan bars give the 
value of the rate constant, error bars show one standard deviation, and black circles show the fitted rate constant. 

 τ r
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Fig. S8. Data fit of ubiquitin using two B0 fields (from analysis shown in SI Fig. S4). Each plot shows rate 
constants for the experiment type shown on the axis (where the field is given in parenthesis). Cyan bars give the 
value of the rate constant, error bars show one standard deviation, and black circles show the fitted rate constant. 

 

 
Fig. S9. Data fit of ubiquitin using three B0 fields (from analysis shown in Fig. 7(d)). Each plot shows rate 
constants for the experiment type shown on the axis (where the field is given in parenthesis). Cyan bars give the 
value of the rate constant, error bars show one standard deviation, and black circles show the fitted rate constant. 
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7. Tables of detection vectors for Ubiquitin analyses 

Table S2: Detection vectors for Ubiquitin analysis at one field (see Fig. 7(a)/(b)) 

  / s-1  / s-1  / s-1 R0 B0 / T 
R2,600 -8.038 -6.592 -2.736 8.047 14.1 
R1,600 -2.381 -1.347 0.662 2.382 14.1 
σΗΝ,600 -0.050 0.346 0.021 0.050 14.1 
Other parameters: δΗΝ=-22945 Hz, ΔσN=169.5 ppm, τr=4.84 ns 

 

Table S3: Detection vectors for Ubiquitin analysis at two fields (see Fig. S4) 

  / s-1  / s-1  / s-1
  / s-1 R0 B0 / T 

R2,600 -8.037 -3.675 -3.701 -2.983 8.047 14.1 
R1,600 -9.123 -4.271 -4.213 -3.542 2.382 14.1 
σΗΝ,600 -2.386 -0.640 -0.793 0.632 0.050 14.1 
R2,800 -1.776 -0.390 -0.322 0.874 9.140 18.8 
R1,800 -0.051 0.228 0.186 0.023 1.781 18.8 
σΗΝ,800 -0.028 0.234 0.078 0.019 0.028 18.8 
Other parameters: δΗΝ=-22945 Hz, ΔσN=169.5 ppm, τr=4.84 ns 

 

Table S4: Detection vectors for Ubiquitin analysis at three fields (see Fig. 7(c)/(d))  

  / s-1  / s-1  / s-1  / s-1   / s-1 R0 B0 / T 

R2,600.3 -8.040 -2.551 -3.772 -3.442 1 8.048 14.1 
R2,800.4 -9.129 -2.972 -4.318 -4.059 1.778 9.142 18.8 
R2,949.4 -10.298 -3.427 -4.857 -4.722 2.507 10.317 22.3 
R1,600.3 -2.390 -0.317 -0.962 0.618 0 2.381 14.1 
R1,800.4 -1.783 -0.133 -0.540 0.944 0 1.790 18.8 
R1,949.4 -1.521 -0.074 -0.264 1.062 0 1.523 22.3 
σΗΝ,600.3 -0.050 0.182 0.254 0.038 0 0.050 14.1 
σΗΝ,800.4 -0.029 0.196 0.148 0.021 0 0.028 18.8 
σΗΝ,949.4 -0.020 0.194 0.097 0.017 0 0.020 22.3 
Other parameters: δΗΝ=-22945 Hz, ΔσN=169.5 ppm, τr=4.84 ns 
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