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ABSTRACT
Nuclear magnetic resonance (NMR) is sensitive to dynamics on a wide range of correlation times. Recently, we have shown that analysis
of relaxation rates via fitting to a correlation function with a small number of exponential terms could yield a biased characterization of
molecular motion in solid-state NMR due to limited sensitivity of experimental data to certain ranges of correlation times. We introduced
an alternative approach based on “detectors” in solid-state NMR, for which detector responses characterize motion for a range of correlation
times and reduce potential bias resulting from the use of simple models for the motional correlation functions. Here, we show that similar
bias can occur in the analysis of solution-state NMR relaxation data. We have thus adapted the detector approach to solution-state NMR,
specifically separating overall tumbling motion from internal motions and accounting for contributions of chemical exchange to transverse
relaxation. We demonstrate that internal protein motions can be described with detectors when the overall motion and the internal motions
are statistically independent. We illustrate the detector analysis on ubiquitin with typical relaxation data sets recorded at a single high magnetic
field or at multiple high magnetic fields and compare with results of model-free analysis. We also compare our methodology to LeMaster’s
method of dynamics analysis.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111081., s

I. INTRODUCTION

Nuclear magnetic resonance (NMR) is a powerful analyti-
cal tool for the investigation of the structure and dynamics of
biomolecules with atomic resolution. Biomolecular dynamics of
picoseconds to nanoseconds are most often characterized by NMR
relaxation.1,2 The analysis of NMR relaxation-rate constants may
be based on models of internal motion,3–5 but most investigations
of picosecond-nanosecond motions rely on an approach that leaves
aside assumptions about the physical nature of the motions and is
thus called model-free.6–9

Relaxation-rate constants are linked to dynamic processes
through the spectral-density function, which is the Fourier trans-
form of the correlation function.10,11 For typical dipole-dipole

interactions, this is the correlation function for internuclear vec-
tors, which provides direct access to molecular motions. The spectral
density function is probed at the eigenfrequencies of the spin sys-
tem under investigation (e.g., near the Larmor frequencies), and one
then assumes the correlation function of motion to consist of one
or several decaying exponential terms and attempts to fit a correla-
tion time and amplitude for each term. When using one exponential
term to describe internal motion of a molecule tumbling in solution,
this is referred to as the model-free approach,9 whereas the extended
model-free approach may have two or more terms to model the
internal motion.6 “Model-free” is sometimes also applied to solid-
state relaxation analysis, although the original usage referred only to
a solution-state method. In solution- and solid-state NMR, the lim-
ited sampling of the spectral-density function restricts the number
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of terms that may be fitted, which can be a source of bias. We have
recently investigated the effect of the limited information in ensem-
bles of relaxation rates in solid-state NMR and demonstrated that
analysis with inappropriate models could result, in the worst case,
in parameters of dynamics whose true values are significantly out-
side the confidence interval of the fitted correlation times and order
parameters.12,13

Here, we investigate whether dynamics analysis with several
internal motions in solution-state NMR is likely to suffer from
similar distortions as can occur in solid-state NMR. This can be
easily tested by calculating rate constants for a correlation func-
tion with several exponential terms and then testing the fit per-
formance when a simpler, model correlation function is used to
fit the calculated rate constants. We calculated a set of longitu-
dinal, R1, and transverse, R2, rate constants, as well as the dipo-
lar cross-relaxation rate constant, σNH, for a molecule tumbling
isotropically in solution, with a tri-exponential correlation func-
tion for internal motions [amplitudes, (1 − S2)Ak, and correlation
times, τc, in Fig. 1(a)]. Such a tri-exponential correlation function
of an H–N bond can result, for example, from a combination of
very fast, librational motions (here assumed at 1 ps), motion of the
peptide plane (320 ps), and a slower loop motion involving corre-
lated motion of several residues (3.2 ns). Note that, in reality, we
could expect such dynamics to result in a distribution of correla-
tion times for each motion, but for simplicity we assume just three
discrete correlate times. The calculated relaxation data set was fit-
ted with a bi-exponential correlation function for internal motions.
We find excellent reproduction of the rate constants in Fig. 1(b);
however, the fitted correlation times and amplitudes of the expo-
nential terms are far from the input amplitudes and correlation
times. This result indicates that such a large set of relaxation rates
fails to distinguish between the simple model used in the analysis
and the true, more complex model of the internal motion. Clearly,
the subsequent mechanistic interpretation of results of the analysis
of relaxation rates with a model that is too simple would lead to
an erroneous picture of dynamics (further examples are shown in
Fig. S6).

A number of approaches already address these shortcomings,
but each has limitations. Spectral-density mapping, for example,
determines the values of the spectral density function only at a
few frequencies that determine measured relaxation rates.14–16 This
requires minimal assumptions about the complexity of motion
and so limits biasing. While the original method uses R1, σNH,
and R2 at a single field, it is possible to exploit near-coincidence
of frequencies in multifield data sets to obtain further informa-
tion.17,18 However, because it does not retrieve the correlation
times or amplitudes of motional modes, the interpretation of spec-
tral density mapping is mostly qualitative19 and does not sepa-
rate contributions from internal and overall (tumbling) motion.
Other attempts have been made to recover information about the
correlation times of motions that lead to relaxation with mini-
mal bias. For instance, the interpretation of motions by projec-
tion on an array of correlation times (IMPACT) determines the
distribution of correlation times through a simple regularization
method and was applied to the analysis of relaxation in disor-
dered proteins.20 Similar to spectral density mapping, IMPACT
does not remove the influence of tumbling. Finally, LeMaster devel-
oped an approach in which R1, σNH, and R2 are fitted, using fixed

FIG. 1. Problematic fit behavior in solution-state NMR: Synthetic data for 15N R2
at 1000 MHz and 15N R1 and 1H–15N σNH (measured from nuclear Overhauser
effects, NOE), at 600, 700, 800, and 1000 MHz for H–N backbone dynamics in
solution-state NMR, for a correlation function with three correlation times. The input
correlation function is shown as a function of the correlation time in (a) (red lines),
with amplitudes of motion shown on the y-axis for a protein tumbling with τr = 4.84
ns. The resulting rate constants [(b), bars] are then fitted to a model correlation
function having only two internal correlation times. The fitted amplitudes and cor-
relation times are shown in (a) (blue lines), and the calculated rate constants are
shown in (b) (black circles). Although a close-to-perfect fit of the rate constants is
obtained, the resulting amplitudes and correlation times are far away from the input
motion. Note that R2 rate constants obtained at different fields contain very little
independent information so that we only show a single rate constant here (multiple
R2 rate constants could also easily be fit). (c) plots the sensitivities of a set of four
detectors that are calculated using this data set. The amplitudes and correlation
times of the input correlation function are replotted (red) to show the overlap of
the motion and the sensitivities. (d) shows the detector responses, which give the
overlap of the sensitivities with amplitudes and correlation times. Bars are sepa-
rated into sections, indicating how each motion contributes to the total detector
responses.

correlation times.21 In this approach, LeMaster was successful
in separating internal motion from tumbling, but his approach
is limited to analyzing data sets recorded at a single magnetic
field.
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To address distortions from using an over-simplified model
of the correlation function in solid-state NMR (sometimes also
referred to as model-free), we have recently introduced an approach
based on dynamics detectors, which are linear combinations of
relaxation-rate constants, where the linear combinations are opti-
mized to yield information about different ranges of correlation
times.12,13 A set of detectors is built for each relaxation data set,
based on the relaxation-rate constants measured, for example, at
different magnetic fields. Then, resulting detector sensitivities indi-
cate what range of correlation times the set of experiments is sen-
sitive to and further indicate how well one may resolve different
ranges of correlation times. Experimental data analysis then quan-
tifies how much motion is in the sensitive range of each detector.
More precisely, detectors yield the overlap of a sensitivity function
and a distribution of correlation times of motion. For example, in
Fig. 1(c), four detector sensitivities are shown, where the overlap of
these sensitivities with the three correlation times and amplitudes in
Figs. 1(a)/1(c) results in the detector responses shown in Fig. 1(d).
This approach provides quantitative information about the corre-
lation times and amplitudes of motions with minimal assumptions
about the motions.13 Detector sensitivities clearly indicate the range
of correlation times that is probed by the set of experiments and the
resolution at which correlation times can be defined. By contrast,
modeling the correlation function with a few decaying exponen-
tials results in correlation times that are a function of the internal
motion and of the choice of experiments.12 As with spectral-
density mapping and the IMPACT approach, detectors as previ-
ously described do not allow separation of tumbling and internal
motion [Figs. 1(c)/1(d) shows detectors that do separate tumbling
and internal motion, using the methodology that we will present
below].

Detectors characterize the overlap of the detector sensitivi-
ties with the distribution of motion so that the resulting dynamics
description may seem rather imprecise as compared to the seem-
ingly well-defined correlation times and amplitudes (order param-
eters) resulting from modeling the correlation function as a few
decaying exponentials. However, as we have shown in Fig. 1 and
previously,12 these correlation times can represent poorly defined
averages of the “true” correlation times of multiple motions. To
better understand the complications brought about by this averag-
ing process, we consider another example. We continue with the
assumption of a motional model defined by three correlation times,
now fixed at correlation times for fast motion, τf,in = 1 ps; for inter-
mediate motion, τi,in = 300 ps; and for slow motion, τs,in = 3 ns.
The order parameters for the two motions with shorter correlation
times are also fixed at (1 − S2)Af,in = 0.25, (1 − S2)Ai,in = 0.15
[where (1 − S2)Af,in = (1 − S2

f,in), (1 − S2)Ai,in = S2
f,in(1 − S2

i,in)].
The amount of slow internal motion, corresponding to the corre-
lation time τs,in = 3 ns, is allowed to vary from (1 − S2)As,in = 0
to (1 − S2)As,in = 0.21 [(1 − S2)As,in = S2

f,inS
2
i,in(1 − S2

s,in)].
Relaxation-rate constants resulting from this correlation function
are then fitted using a bi-exponential correlation function (using the
same set of simulated relaxation data as in Fig. 1), with results in
Fig. 2(a).

When (1−S2)As,in = 0, the input motion has only two terms, so
the parameters of the fitted model match the input model, yielding a
perfect fit. When (1 − S2)As,in increases, the fitted (1 − S2)As,fit also
increases since it now contains contributions from both (1−S2)As,in
and (1 − S2)A i,in. Correspondingly, τs,fit also increases from contri-
butions from the slow motion. However, we also see that there is
about a 15% increase in (1−S2)Af,fit and more than an order of mag-
nitude change in τf,fit. Then, we see that a very slow motion (here

FIG. 2. Model-free and detector behavior as a function of motional amplitude. We assume a model with three correlation times, with all parameters but the order parameter
of the slowest motion fixed [(1 − S2

)Af,in = 0.25, τf,in = 1 × 10−12 s, (1 − S2
)Ai,in = 0.15, τi,in = 3 × 10−10 s, τs,in = 3 × 10−9 s]. (a) shows fitted amplitudes (top) and

correlation times (bottom) as a function of the amplitude of the input slow motion, (1− S2
)As,in, resulting from fitting rate constants using a bi-exponential correlation function

(same experiments as in Fig. 1). Black dashed lines show the input parameters. (b) shows detector responses for the same motions, using the detector sensitivities given in
Fig. 1(c).
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3 ns) can influence a fitted parameter that corresponds to motion
two orders of magnitude faster (with τf,fit ≤ 25 ps). This relayed influ-
ence of a slow motion on fast-motional parameters can potentially
convolute the interpretation of model-free results.

The effect of the change in amplitude (1−S2)As,in on the detec-
tor analysis is more regular [Fig. 2(b)]. Increasing the amplitude
results in a strong increase in ρ(θ,S)

4 , which is expected since the max-
imum of the ρ4 detector sensitivity is close to 3 ns, and a smaller
increase in ρ(θ,S)

3 since the ρ3 sensitivity is nonzero at 3 ns [Fig. 1(c)].
Critically, ρ(θ,S)

1 and ρ(θ,S)
2 are not visibly influenced by the slow

motion since they are only sensitive to short correlation times. An
increase in the amplitude in a motion results simply in the increase
in detector responses sensitive to the correlation time of that motion,
with no effects on the other detectors.

Neither model-free analysis nor detectors allow us to recover
a complete description of the original motion. On the other hand,
given the original motion, we may directly determine detector
responses (which will be precisely defined below), but we may
not easily determine the model-free parameters except for special
cases.9,22 While both methods leave ambiguity in describing the orig-
inal motion, detector sensitivities give a clear indication as to where
these ambiguities are, via detector sensitivities. These advantages
are particularly important when comparing NMR analyses to other
methods, such as molecular dynamics simulations.23

Here, we present a modified detector framework adapted to the
analysis of solution-state relaxation, where the influence of the over-
all rotational diffusion (tumbling) of a macromolecule on the detec-
tor responses is removed. We have also expanded the DIFRATE
software with updated methodology24 and analyzed typical data sets
recorded at one to three static magnetic fields. We compare the
results to analyses of data using the extended model-free approach
and find that we obtain a more stable and easier to interpret descrip-
tion of the internal dynamics. We also compare our approach to that
of LeMaster for the analysis of relaxation rate constants recorded at
a single magnetic field; the methods yield very similar behavior so
that LeMaster’s approach may be considered as a special case of the
detector approach.21

II. THEORY
A. Background

In NMR dynamics, one often assumes that the internal motion
may be described by a correlation function, CI(t), consisting of one
or more exponential terms9 so that one can write

CI(t) = S2 + (1 − S2)∑
k
Ak exp(−t/τk). (1)

Then, (1 − S2) is related to the total amplitude of internal motion,
and Ak give contributions from individual internal motions at effec-
tive correlation times τk (Ak sum to 1). In the case of solution-state
NMR, we usually assume separability (statistical independence)25 of
internal and overall motions leading, for isotropic tumbling, to a
total correlation function of

C(t) = CO(t)CI(t),

CO(t) =
1
5

exp(−t/τr),
(2)

where CO(t) is the correlation function of the overall motion, and τr
is the corresponding rotational correlation time.9

From C(t), we obtain the spectral-density function

J(ω) = 2
∞

∫
0

C(t) cos(ωt)dt (3)

and subsequently calculate various relaxation-rate constants. In this
study, we will primarily concentrate on R1, R2, and the dipolar cross-
relaxation rate constant, σIS [measured through nuclear Overhauser
effects (NOE)],

R1 = (
δIS
4
)

2

(J(ωI − ωS) + 3J(ωI) + 6J(ωI + ωS)) +
1
3
(ωIΔσI)2J(ωI),

(4)

R2 =
1
2
R1 + (δ

IS

4
)(3J(ωS) + 2J(0)) +

2
9
(ωIΔσI)2J(0), (5)

σIS = (
δIS
4
)

2

(−J(ωI − ωS) + 6J(ωI + ωS)). (6)

Here, δIS is the anisotropy of the dipolar coupling
[δIS = (μ/2π)(h̵γIγS/r3)] and ωIΔσI = 3/2δI is the difference
between ωIσzz and ωIσxx, two of the principal values of the chemical-
shift anisotropy (CSA) tensor (where we assume the CSA to be
axially symmetric). In this study, for 15N relaxation, these terms
correspond to the 1H–15N dipole-dipole and 15N CSA interactions.

A common strategy for the determination of internal dynam-
ics in a molecule is to measure a set of relaxation-rate constants
and assume a number of exponential terms describing the inter-
nal dynamics [Eq. (1)]. The correlation times (τk) and amplitudes
(Ak) are optimized for each exponential term such that experimental
relaxation-rate constants are reproduced well. For solid-state NMR,
such an approach to analysis may yield a distorted representation of
the internal dynamics, if the model contains fewer exponential terms
than the real motion.12

An alternative approach is to characterize the motion with sev-
eral detector responses, which quantify the motion for a range of
correlation times, defined by ρn(z) (the detector “sensitivity”), and is
unbiased by any model of the correlation function. We shortly sum-
marize this approach here (for a detailed description, see Ref. 13).
Detectors are obtained via optimized linear combination of the
experimental rate constants. If, for example, we take two rate con-
stants, R(θ,S)

ζ and R(θ,S)
ξ , and add them together with coefficients a

and b, we can define a detector response, ρ(θ,S)
n , as

ρ(θ,S)
n = aR(θ,S)

ζ + bR(θ,S)
ξ . (7)

We can understand why such an approach is useful, if we describe
the correlation function by a distribution of correlation times of
motion (henceforth referred to as the distribution of motion)

C(t) = 1
5

⎡⎢⎢⎢⎢⎣
S2 + (1 − S2)

∞

∫
−∞

θ(z) exp(−t/(10z ⋅ 1 s))dz
⎤⎥⎥⎥⎥⎦

, (8)

where (1 − S2) gives the total amplitude of motion and θ(z) gives the
distribution of that motion over all correlation times [θ(z) integrates
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to 1], where z = log10(τc/1 s). Then, each relaxation-rate constant is
given by

R(θ,S)
ζ = (1 − S2)

∞

∫
−∞

θ(z)Rζ(z)dz, (9)

where R(θ,S)
ζ is the rate constant for an experiment, indicated by

ζ, with a distribution given by (1 − S2)θ(z). Rζ(z) is the “sensitiv-
ity” of that experiment at a given correlation time, z, and can be
calculated from Eqs. (4)–(6), by assuming a mono-exponential cor-
relation function with correlation time τc = 10z ⋅ 1 s and order
parameter (1 − S2) = 1. A glossary of the terms used here is given at
the beginning of the supplementary material.

The value of ρ(θ,S)
n is given by

ρ(θ,S)
n = (1 − S2)

∞

∫
−∞

θ(z)ρn(z)dz, (10)

where the sensitivity of the detector, ρn(z), is

ρn(z) = aRζ(z) + bRξ(z). (11)

One adjusts a and b to optimize the form of ρn(z). This principle
can be applied to large sets of experimental rate constants so that
one may design the detector sensitivities, ρn(z), to give optimally
separated ranges of correlation times. In this case, we define detec-
tion vectors, r⃗n, which relate the experimental rate constants to the
detector responses as

⎛
⎜⎜⎜
⎝

ρ(θ,S)
1

⋮

ρ(θ,S)
n

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

[⃗r1]ζ/σ(Rζ) ⋯ [⃗rn]ζ/σ(Rζ)
⋮ ⋱ ⋮

[⃗r1]ξ/σ(Rξ) ⋯ [⃗rn]ξ/σ(Rξ)

⎞
⎟⎟⎟
⎠

−1⎛
⎜⎜⎜⎜
⎝

R(θ,S)
ζ /σ(Rζ)
⋮

R(θ,S)
ξ /σ(Rξ)

⎞
⎟⎟⎟⎟
⎠

,

(12)

where [⃗rj]ζ is the element of detection vector j, corresponding to
the relaxation-rate constant denoted by ζ, and the matrix power of
−1 indicates a pseudoinverse (since one typically has more experi-
ments than detectors). σ(Rζ) indicates the standard deviation for the
experiment denoted by ζ. Inclusion of this term reweights the lin-
ear combination depending on data quality for each experiment and
residue. It may also be omitted, but its inclusion is default in the
DIFRATE software.24 Essentially, we are fitting the measured rate
constants with a sum of the detection vectors. Note that, in practice,
one restricts the allowed values of the detector responses so that a
linear least-squares solver may be necessary for this fit, as opposed
to using a simple matrix inversion as shown here.

B. Sensitivity to internal motion
The simple, linear relationship between the distribution of

motions, (1 − S2)θ(z), and the measured rate constants, R(θ,S)
ζ , as

obtained in Eq. (9), is particularly useful for dynamics analysis in
solid-state NMR. When no tumbling is present, the correlation func-
tion primarily describes internal motion with additional contribu-
tions from small-amplitude overall motion of the protein (such as
“rocking” in a crystal26,27 or overall motion in a fibril28). By contrast,
in solution-state NMR, the total correlation function is a product of
the correlation function of the internal motion and the correlation

function of the tumbling [Eq. (2), assuming statistical independence
of the two motions]. Although one may apply the detector analy-
sis as derived for solid-state NMR directly to solution-state data,
the resulting detector responses convolute information about the
distribution of internal motion with information about the overall
tumbling (see below). We would rather characterize only the dis-
tribution of internal motion which requires a similar relationship
between the measured rate constants, R(θ,S)

ζ , and the distribution of
internal motion [denoted as (1 − S2)θ(zi), where zi is the log of the
internal correlation time, zi = log10(τi/1 s)].

To do so, we begin with the correlation function of an inter-
action in a molecule undergoing isotropic molecular tumbling and
internal motion described by a distribution (1 − S2)θ(zi), which is
given by

C(t) = 1
5

exp(−t/τr)
⎡⎢⎢⎢⎢⎣
S2 + (1 − S2)

∞

∫
−∞

θ(zi) exp(−t/(10zi ⋅ 1 s))dzi

⎤⎥⎥⎥⎥⎦
.

(13)

In analogy to Eq. (9), this leads to a solution-state relaxation-rate
constant of the form

R(θ,S)
ζ = S2Rζ(zr) + (1 − S2)

∞

∫
−∞

θ(zi)Rζ(zeff(zi))dzi. (14)

Here, zr = log10(τr/1 s), and the effective correlation time describing
the combined effects of overall and internal motion is given by

τeff =
τiτr

τi + τr
. (15)

The dependence of τeff as a function of τi is plotted in Fig. 3. If we
take zeff = log10(τeff/1 s), we obtain

zeff(z) = log10(
τr10zi

τr + 10zi ⋅ 1 s
). (16)

FIG. 3. Effective correlation time for internal motions. The effective correlation time,
τeff, is plotted against the internal correlation time, τi, assuming a rotational corre-
lation time of τr = 4.84 ns. We show the effective correlation time τeff (solid blue
line), the correlation time for internal motions, τi (red dashed line), and the rota-
tional correlation time, τr (green dashed line). If τi ≪ τr, then τeff = τi, but as τi
approaches τr the effective correlation time evolves asymptotically toward τr.
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We can now rewrite the solution-state relaxation-rate constant
such that the effect of overall rotational tumbling is separated from
the net effects of the distribution of internal motion, (1−S2)θ(zi),

R(θ,S)
ζ = S2Rζ(zr) + (1 − S2)

∞

∫
−∞

θ(zi)Rζ(zeff(zi))dzi

= R0
ζ + (1 − S2)

∞

∫
−∞

θ(zi)(Rζ(zeff(zi)) − R0
ζ)dzi, (17)

where we have defined R0
ζ = Rζ(zr). Then, if we define the sensitivity

to internal motion as

Rsolu.
ζ (zi) = Rζ(zeff(zi)) − R0

ζ = Rζ(log10(
τr10zi

τr + 10zi ⋅ 1 s
)) − R0

ζ ,

(18)

we obtain the following formula for the relaxation-rate constant:

R(θ,S)
ζ = R0

ζ + (1 − S2)
∞

∫
−∞

θ(zi)Rsolu.
ζ (zi)dzi. (19)

The resulting equation has nearly the same form as Eq. (9), with
the only differences between Eqs. (18) and (9) being the offset term,
R0
ζ , and that we first calculate the effective correlation time from zi

and τr, which is then inserted into the sensitivity, as Rζ(zeff(zi)).
Note that in this study, we assume isotropic tumbling throughout.
In principle, one may also introduce a more complex form of the
correlation function of the tumbling in Eq. (13), as would result
from anisotropic tumbling. This will result in different experimental
sensitivities to internal motion, Rsolu.

ζ (zi), depending on the relative
orientation of the rotational diffusion tensor and the corresponding
bond. While this will make the optimization of detector sensitivi-
ties more complicated, variations in the experimental sensitivities
will not prohibit the application of detectors unless the anisotropy
is extreme. It is possible to generate very similar detector sensitiv-
ities for all orientations for the range 0.2 ≤ D∥/D� ≤ 5, where
variation in experimental sensitivity will require reoptimization of
detector sensitivities for each bond orientation, although this step
can be automated. For larger anisotropies, detector sensitivities for
different residues may be significantly different so that the detec-
tor responses themselves should not be directly compared (detector
analysis may still be applied, but attention must be given to changes
in sensitivities).

We can decompose the contributions to the relaxation-rate
constant given in Eqs. (18) and (19) into three parts, as illustrated
in Fig. 4, which depend on the internal distribution of motion,
(1 − S2)θ(zi), and the correlation time of the tumbling, τr: (i)
Relaxation induced by tumbling alone, as in the case of a com-
pletely rigid molecule. (ii) Reduction of relaxation from tumbling
due to attenuation of NMR interactions by internal motion. (iii)
Relaxation induced directly by the effective internal motion [see
Eq. (18)].

The separation into three contributions seems at first slightly
counterintuitive: we expect tumbling to mask the influence of
motions with correlation times significantly longer than τr . The
attenuation of NMR interactions by internal motions (δeff = Sδ)

can be considered uniform for all correlation times (subtracting
R0
ζ from the sensitivity), while relaxation induced directly by inter-

nal motion [adding Rζ(zeff (zi)) to the sensitivity] depends on zi

but approaches R0
ζ for long correlation times. However, the sum of

the latter two contributions is 0 for long correlation times, yielding
the expected behavior. This is equivalent to the usual description:
internal motions much slower than the overall tumbling are not
relaxation active.

In principle, it is also possible to characterize the solution-
state relaxation-rate constants using the methodology developed for
solid-state NMR. However, such an analysis would provide the total
distribution of motion, θtot.(z), which yields the correlation func-
tion via Eq. (8). This distribution describes the internal motion
(having an effective correlation time as opposed to the internal cor-
relation time) and the overall tumbling motion. Since the overall
tumbling leads to an isotropic distribution of orientations, the order
parameter is then S2 = 0 such that (1 − S2) = 1, and we obtain

R(θ,S)
ζ = R0

ζ + (1 − S2)
∞

∫
−∞

θ(zi)Rsolu.
ζ (zi)dzi

= R(θtot. ,0)
ζ =

∞

∫
−∞

θtot.(z)Rζ(z)dz. (20)

The distribution of total motion, θtot.(z), is different from the dis-
tribution of internal motion, (1 − S2)θ(zi), since overall tumbling
(z = zr) and internal motion (z = zeff) contribute to the distribu-
tion of total motion [for θtot.(z), z can be both the tumbling cor-
relation time, zr, and zeff, resulting from internal motion and tum-
bling]. Note that there is a well-defined relationship between the two
distributions, given in supplementary material, Sec. 1.

We investigate the behavior of the sensitivity to internal motion
[Rsolu.

ζ (zi)] by considering several typical sets of experiments. For
example, Fig. 5(a) shows the normalized sensitivities, Rζ(z), to the
distribution of the total motion, θtot.(z), for R1, R2, and σNH rate
constants. In Fig. 5(b), normalized sensitivities, Rsolu.

ζ (zi), to the dis-
tribution of the internal motion, (1 − S2)θ(zi), are given. We see a
number of differences: first, at short correlation times, the sensitivi-
ties to internal motion, Rsolu.

ζ (zi), are negative due to the correction
term R0

ζ [see Eq. (18)]. At sufficiently short correlation times, very
little relaxation is induced directly by internal motion, and the sen-
sitivity is dominated by the term−R0

ζ in Eq. (18), resulting in a reduc-
tion of the relaxation-rate constant compared to a rigid molecule. At
longer correlation times, the sensitivity to internal motion increases
and, in some cases, becomes positive, but when the internal corre-
lation time becomes larger than the correlation time of the overall
tumbling, all the Rsolu.

ζ (zi) approach zero since the tumbling masks
internal motions that are significantly slower than the tumbling.
The sensitivity of the R1 rate constant varies significantly in the
range 600–950 MHz [Fig. 5(c)], with less variation for the sensitivity
σNH, and almost no variation for R2 in the same range of magnetic
fields.

C. Optimized linear combinations for detector design
Dynamics detectors are generated by optimizing a linear

combination of the relaxation-rate constant sensitivities to obtain
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FIG. 4. Contributions to the 15N R1 relaxation-rate constant at 600 MHz with τr = 4.84 ns. (a) Relaxation due to tumbling for an internally rigid molecule may be calculated by
evaluating R1,600(zr) = R0

1,600, where zr = log10(τr/1 s). Then, (a) shows R1,600(z) as a dashed line, and zr = log10(τr) as a vertical, dotted line, with the resulting R0
1,600

shown as a blue circle. R0
1,600 appears as a constant offset for calculation of the relaxation-rate constant, R(θ,S)

1,600 [see (d)]. (b) Internal motion results in a reduction of the
effective size of anisotropic interactions such that δeff = Sδ [(b), top], yielding a reduction in relaxation by (1− S2

)R0
1,600. This reduction is scaled by the total internal motion,

(1 − S2), but does not depend on the correlation time, resulting in a uniform, negative contribution to the sensitivity to internal motion of −R0
1,600. (c) The effective internal

motion (internal motion composed with tumbling) induces some relaxation directly, although with an effective correlation time [zeff = log10(τeff/1 s)], illustrated in (c) with
R1,600(zeff(zi)) plotted [zeff is a function of z and zr, see Eq. (16) and Fig. 3]. The sensitivity to internal motion, Rsolu.

1,600(zi), is finally obtained by summing R1,600(zeff (zi))
and −R0

1,600, which is plotted in magenta. This function along with the distribution of motion [(1 − S2
)θ(zi)] may then be used to calculate the relaxation rate constant,

R(θ,S)
1,600 , as given in (d). Note that for correlation times much longer than the tumbling correlation time, the terms −R0

1,600 and R1,600(zeff(zi)) cancel out, illustrating the fact
that the tumbling masks the influence of motions with correlation times much longer than the correlation time of the tumbling.

detector sensitivities, which are well separated into different
ranges of correlation times. Optimized linear combinations for the
relaxation-rate constant sensitivities shown in Fig. 5 (top) were
generated and plotted in Fig. 5 (bottom). Note that optimization
methods discussed for solid-state NMR13 are applicable to those
used in solution-state NMR, despite the appearance of negative
sensitivities.

The detector sensitivities of total and internal motion differ
markedly for short and long correlation times [Figs. 5(a)/5(c) vs
Figs. 5(b)/5(d), bottom]. Considering the analysis of relaxation-
rate constants measured at a single magnetic field [Fig. 5(a) and
(b)], we find two of the three detectors in approximately the same

positions for total and internal motion (corresponding detectors
are plotted with the same color). However, the third detector (ρ3
for total motion, ρ1 for internal motion) has moved significantly.
ρ3(z) for the total motion is strongly dependent on R2 and diverges
as one approaches long correlation times, whereas ρsolu.

1 (zi) of the
internal motion is nearly uniformly sensitive at short correlation
times. Differences arise because the detectors characterize differ-
ent distributions of motion [internal motion, (1 − S2)θ(zi), or
total motion θtot.(z), see supplementary material, Sec. 1 for com-
parison]. The sensitivity to internal motion is altered by the tum-
bling, which masks slow motions. As a consequence, the sensi-
tivities, ρsolu.

n (zi), must approach zero above the overall tumbling
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FIG. 5. Experimental sensitivities for total [Rζ(z)] and internal [Rsolu.
ζ (zi)] motions, and optimized detector sensitivities [ρn(z)]. (a) Experimental sensitivities, Rζ (z), for σNH,

R1, and R2 rate constants at 600 MHz for the total motion (top, with sensitivities normalized to 1) and an optimized set of detector sensitivities, ρn(z), obtained by linear
combination of the rate constant sensitivities (bottom). (b) Sensitivity to internal motion, Rsolu.

ζ (zi), calculated assuming a tumbling correlation time of τr = 4.84 ns (top) and

resulting detector sensitivities, ρsolu.
n (zi) (bottom). (c) shows experimental sensitivities, Rζ (z), at 600, 800 MHz, and 950 MHz for the total motion (top), with a set of four

detector sensitivities, ρn(z), calculated (bottom). (d) The same set of experiments with sensitivities to internal motion Rsolu.
ζ (zi) (τr = 4.84 ns). In (b) and (d), τr is indicated with

a gray dotted line through all plots. In each section, the experimental sensitivities are normalized so that the maximum of the absolute value is 1. Note that the normalization
of the R2 sensitivity to the total motion, R2(z), is determined by the longest correlation time in the plot so that decreasing the maximum z in plots in (a) and (c) would cause
R2(z) to appear to shift to the left [correspondingly, ρ3(z) would also shift].

correlation time. On the other hand, ρsolu.
n (zi) is sensitive to motion

at short correlation times since one can determine how much the
measured relaxation-rate constants have been reduced from the
expected relaxation for an internally rigid molecule (due to atten-
uation of the effective size of anisotropic interactions). Note that
this can be determined because we consider the correlation time of
the tumbling determined independently. The overall tumbling cor-
relation time must be determined before detector analysis, using
existing methods, e.g., the program ROTDIF29 was used in this
study.

Similar behavior is observed in the analysis of relaxation at
three magnetic fields [Figs. 5(c)/5(d), bottom]. In principle, up to
nine detectors can be optimized for nine relaxation rate constants.
However, R2 sensitivities are typically very similar so that one rarely
gains additional discrimination between correlation-time ranges by
using more than one R2 experiment. Multiple R2 experiments are
nonetheless useful because they increase the signal-to-noise ratio
and allow the determination of contributions of broadening due to
fast chemical exchange to R2 (see below). Similarly, multiple high-
field R1 usually only provide two detectors, as do multiple NOE
experiments (although sufficient separation in B0 fields and signal-
to-noise may allow more). Such a three-field data set can be used
to optimize three to five detectors, depending on the signal-to-noise
ratio and the separation of the B0 fields. Here, we have optimized
four detectors (supplementary material, Sec. 2.3 discusses the choice
of number of detectors). The range of sensitivities barely increases
from one to three fields (considering detectors ρ 2–ρ4; ρ1 is always
sensitive to the shortest correlation times for solution-state data).
This is because the shortest correlation times to which ρ 2 is sen-
sitive are determined by the highest field at which the NOE (σNH)
was measured, and the sensitivity to long correlation times is lim-
ited by the rotational correlation time (as opposed to the choice

of the experimental parameters). So, it is possible to shift ρsolu.
2 (zi)

toward shorter correlation times, by using a larger B0 field for the
NOE experiment, but sensitivity to longer correlation times can only
be significantly increased if the rotational correlation time becomes
longer and the magnetic field, B0, becomes lower. Changing the B0
field within the range of high fields used in biomolecular NMR has
very limited effect since the variations of sensitivity of different σNH
are relatively small compared to the difference in sensitivity of σNH
and R1 at the same field.

We have previously developed a graphical method of optimiza-
tion to generate detector sensitivities from linear combinations of
the relaxation-rate constant sensitivities, using “allowed spaces.”13

Here, we simply review the definition of the spaces and how they
are used to generate the linear combination of relaxation-rate con-
stant sensitivities. An allowed space can be understood as follows:
suppose we record a set of N experiments. Then, we can take an
N-dimensional space, where each axis represents the value of one
of the relaxation-rate constants. Not all combinations of relaxation-
rate constants are physically possible given an arbitrary distribution
of motion, (1 − S2)θ(z), so that we may determine what points in
the space correspond to a set of relaxation-rate constants that can
result from some distribution of motion. All possible sets of rate
constants for an arbitrary distribution of motion are then referred
to as the “allowed space.” Note that for solution-state relaxation, a
molecule with no internal motion will still have nonzero relaxation-
rate constants due to overall tumbling [Eq. (17)]. Therefore, when
plotting the allowed space for solution-state relaxation, we first cal-
culate R(θ,S)

ζ − R0
ζ so that the origin of the space corresponds to no

internal motion (1 − S2 = 0). We also use rate constants with nor-
malized axes denoted as R(θ,S)

ζ , where ζ indicates the experiment, to
yield
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R
(θ,S)
ζ = (R(θ,S)

ζ − R0
ζ)/cζ ,

cζ = median(σ(Rζ)),
or

cζ = max∣Rζ
solu.(z)∣.

(21)

In the case that one plots the allowed space for a particular set of
experimental measurements, cζ can be taken to be the standard devi-
ation of the measurement of rate constant, R(θ,S)

ζ , or its median for a
rate constant measured at multiple sites. The distance between two
points in the allowed space quantifies how easily these points may be
distinguished from the given experimental data set. In the absence of
experimental data, one can take the maximum of the absolute value
of the sensitivity to internal motion so that all experiments are on a
similar scale.

The allowed space of relaxation-rate constants for a data set
including R1, R2, and σNH at a single field (at 600 MHz, taking
cζ = max∣Rζ(z)∣) was computed (see Fig. 6). The origin corresponds
to no internal motion (1 − S2 = 0). The observed relaxation-rate
constants at the origin are nonzero due to the offset terms, R0

ζ , as
indicated in Eq. (21). Positions in the space that can result from
internal motion with a single correlation time (Dirac distribution)
are shown as solid lines (see Fig. 6 with 1 − S2 = 1 and 1 − S2 = 0.5).
The volume shown corresponds to any point that can be constructed
from a (positive) linear combination of positions in the space corre-
sponding to single correlation times, i.e., any point that can result
from some distribution of internal motion, (1 − S2)θ(zi).

We note that for a given data set, the information about how
motion is distributed over different internal correlation times, as
described by θ(zi), is contained entirely in the ratios of the various
rate constants, whereas the total amplitude of motion, (1 − S2), is
obtained from the magnitude of the rate constants. Therefore, we
have introduced a “reduced space” of rate constants, for which we
define a ratio of the relaxation-rate constants, in order to remove
dependence on the total amplitude of motion (reducing the dimen-
sionality has practical advantages, in particular, allowing one to visu-
alize the allowed space of rate constants for three rate constants in a
2D plot). Previously, we have defined the dimensions of the reduced
space to be given by some κζ = R

(θ,S)
ζ /ΣζR

(θ,S)
ζ , where ΣζR

(θ,S)
ζ

indicates the sum of all normalized relaxation rate constants. For
N experiments, one obtains then N − 1 linearly independent κζ to
define the reduced space. When defining the κζ for solution-state
analysis, however, we must be careful because the R(θ,S)

ζ can be both

negative and positive so that ΣζR
(θ,S)
ζ may cross zero, causing κζ to

diverge at such points. Therefore, we use one of the experiments,
ζ, for which the corresponding sensitivity, Rsolu.

ζ (zi), remains nega-
tive at all values of zi to define the reduced space. Such a behavior is
often observed for relaxation-rate constants which sample the spec-
tral density at zero frequency [J(0)], i.e., transverse relaxation-rate
constants. For the example shown above with relaxation-rate con-
stants R1, R2, and σNH at 600 MHz, the corresponding reduced space
can be defined by dividing by R

(θ,S)
2,600 so that

κR1,600 =
R
(θ,S)
R1,600

−R(θ,S)
R2,600

, κσ,600 =
R
(θ,S)
σ,600

−R(θ,S)
R2,600

, (22)

FIG. 6. Allowed space of normalized rate constants for 15N R1, R2, and σHN rate
constants acquired at 600 MHz, assuming τr = 4.84 ns. Two views are shown in
(a) and (b), where the axes are the normalized rate constants, R(θ,S)

ζ . Sets of
the three rate constants which are possible for an arbitrary distribution of internal
motion, (1 − S2

)θ(zi), are highlighted in blue (allowed space, different shading
shows different sides of the space). Traces show positions in the space cor-
responding to exactly one correlation time, with the red trace having an order
parameter, S2, such that (1 − S2) = 1 and blue having an order parameter such
that (1 − S2) = 0.5. Note that the allowed space is a volume and contains all points
that are along the red trace and additionally all points that are between two or more
points on the red trace.

where the dimensionality of the reduced space is one less than the
number of experiments. An example of the reduced space is shown
for R1, R2, and σNH at 600 MHz, for both the total motion (includes
tumbling in solution) and the internal motion (tumbling removed)
in Figs. 7(a) and 7(b), respectively.
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FIG. 7. Reduced space of normalized rate constants for R1, R2, and σNH
rate constants at 600 MHz, where the x- and y-axes correspond to κ. (a)
Allowed region (cyan) for the sensitivities to the total motion [for character-
izing θtot.(z), see Eq. (20)], where κ are obtained by dividing by R

(θtot. ,S)
1,600

+ R
(θtot. ,S)
σ,600 + R

(θtot. ,S)
2,600 (this value is color-coded onto the plot for S = 0 when

the position corresponds to a single correlation time). (b) Allowed region (cyan)
for the sensitivities to the internal motion [(1 − S2

)θ(zi), assuming τr = 4.84 ns],
where the κ coefficients are obtained by dividing by −R(θ,S)

2,600 (value color-coded
onto the plot for S = 0 when the position corresponds to a single internal correla-
tion time). In both (a) and (b), good positions for κ⃗n are shown as colored dots,
which indicate the direction of the detection vectors (⃗rn). These correspond to the
sensitivities shown in Figs. 5(a) and 5(b), respectively, after applying normalization
[for example, see Eq. (23)].

Detectors are generated by selecting an optimal set of “detec-
tion vectors” that extend into the full space. Correspondingly, these
are points in the reduced space (their positions denoted as κ⃗n). From
these positions, it is possible to determine the direction of the detec-
tion vector, in this example defined by κR1,600 and κσ,600, according
to

r⃗n = an
⎛
⎜⎜
⎝

κR2,600cR2,600

κR1,600cR1,600

κσ,600cσ,600

⎞
⎟⎟
⎠

,

κR2,600 = −1.

(23)

Recall that the κζ define ratios of the rate constants, but not their
absolute values, so that a point in the reduced space (κ⃗n) does
not define the length of the detection vector, only its direction.
The length is then determined by adjustment of an, which changes
the amplitude of the corresponding detector sensitivity since it is
inversely proportional to an (as discussed previously;13 we use the
equal-maximum normalization here, with all sensitivities having
maxima of one). Ideally, one surrounds (or nearly surrounds) the
reduced space with a minimal number of κ⃗n. To fully surround the
space, it is necessary to have at leastN different κ⃗n forN experiments.
However, one may also reduce the number of κ⃗n, yielding fewer
detectors, but obtain a more precise determination of the remain-
ing detectors.13 The colored dots in Figs. 7(a) and 7(b) indicate
good choices for κ⃗n to yield well-separated detector sensitivities, for
the total motion (solid-state) and internal motion (solution-state),
respectively. The positions yield the detector sensitivities shown in
Figs. 5(a) and 5(b) (bottom).

As in Eq. (12), measured relaxation-rate constants in solution-
state are fitted to detection vectors, r⃗n. For solution-state data, due
to the offset term, R0

ζ , appearing in Eq. (21), the calculated detector
responses are given by

⎛
⎜⎜⎜⎜
⎝

ρ(θ,S)
1

⋮

ρ(θ,S)
n

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

[⃗r1]ζ/σ(Rζ) ⋯ [⃗rn]ζ/σ(Rζ)

⋮ ⋱ ⋮

[⃗r1]ξ/σ(Rξ) ⋯ [⃗rn]ξ/σ(Rξ)

⎞
⎟⎟⎟
⎠

−1

×
⎛
⎜⎜⎜⎜
⎝

(R(θ,S)
ζ − R0

ζ)/σ(Rζ)

⋮

(R(θ,S)
ξ − R0

ξ)/σ(Rξ)

⎞
⎟⎟⎟⎟
⎠

. (24)

Here, the variables ζ to ξ span the experimental data set (e.g., for a
one field data set at 600 MHz, the ζ, ξ would be replaced by R2,600,
R1,600, σ600). Before fitting, one subtracts R0

ζ from each experimen-
tal rate constant. Note that the number of detection vectors cannot
exceed the number of experiments, and in practice, there are usu-
ally fewer detection vectors than experiments. In particular, when
experiments have similar sensitivities, the use of too many detection
vectors would result in some of them being almost colinear so that
the matrix shown in Eq. (24) would be almost singular (i.e., lacking
an inverse) increasing the error of the analysis (see supplementary
material, Sec. 2.2 for more details). One also obtains the detector
sensitivities from the detection vectors, which results in a similar
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expression as in Eq. (24),

⎛
⎜⎜⎜⎜
⎝

ρ1
solu.(z)

⋮

ρsolu.
n (z)

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

[⃗r1]ζ/σ(Rζ) ⋯ [⃗rn]ζ/σ(Rζ)

⋮ ⋱ ⋮

[⃗r1]ξ/σ(Rξ) ⋯ [⃗rn]ξ/σ(Rξ)

⎞
⎟⎟⎟
⎠

−1

×
⎛
⎜⎜⎜⎜
⎝

Rsolu.
ζ (z)/σ(Rζ)

⋮

Rsolu.
ξ (z)/σ(Rξ)

⎞
⎟⎟⎟⎟
⎠

. (25)

Note that we have modified Eq. (25) slightly from its previous
form, where normalization by the standard deviations, σ(Rζ), was
not indicated.13 This usually makes little difference in the result-
ing sensitivities but is a more rigorous definition in the case that
standard deviations are included when fitting the rate constants as
in Eq. (24).

Although allowed spaces may be used for visualization of the
information content of a relaxation data set, and subsequent place-
ment of detection vectors, r⃗n (via the placement of κ⃗n in the reduced
space), to generate optimized linear combinations of rate constants,
this method may become cumbersome for large data sets. A solu-
tion is to use singular value decomposition30 for detector optimiza-
tion (see supplementary material, Sec. 2.1). One can also estimate
detector uncertainties as a function of the resulting singular values
(supplementary material, Secs. 2.2 and 2.3). Tools to perform this
optimization and subsequent analysis are provided in DIFRATE ver-
sion 2,24 which is available for MATLAB (also available without a
MATLAB license via MATLAB Runtime). In the analysis of typical
15N relaxation data sets presented below, we have used this improved
approach.

D. Correcting for exchange contributions
Thus far, we have assumed that all contributions to the mea-

sured relaxation-rate constants can be explained by the distribu-
tion of motion [Eq. (20)], describing internal stochastic motion, and
by overall tumbling of the molecule in solution. However, other
sources of relaxation may exist, in particular, the contribution of
exchange to transverse relaxation rates, R2. In this case, we must
also account for such a process in our analysis. The analysis of
picosecond-nanosecond motion can be performed with data at mul-
tiple magnetic fields. If the exchange process is in the fast-exchange
regime [2π(ν1 − ν2)τex ≪ 1], where ν1 and ν2 are the two resonance
frequencies of the exchanging resonance, R2 is proportional to (ν1 −
ν2)2, which is in turn proportional to B2

0. In this case, one can add
an additional detection vector with nonzero terms corresponding to
each R2 experiment, which are proportional to B2

0. For example,

r⃗ex =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

⋮
B2

0,ξ

⋮
B2

0,ζ

0

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/B2
0,ξ (26)

could be added to a set of detection vectors where B2
0,ζ give the static

magnetic fields of the R2 experiments. Then, this detection vector is
also fitted to the data with the rest of the detection vectors and will
fit deviations of R2 relaxation behavior due to fast exchange con-
tributions. Normalization of this detection vector will not affect our
ability to factor out the influence from chemical exchange. However,
in the normalization scheme here, we set one of the elements to one
so that the responses of this detector will estimate R2,ex at the field
corresponding to this element. This method of accounting for chem-
ical exchange is only applicable with R2 acquired at multiple fields.
Note that there is no corresponding sensitivity function [ρn(z)] for
this detector.

III. RESULTS AND DISCUSSION
We have applied detectors derived from simple one-field or

typical multifield data sets (three fields) to relaxation data previously
acquired on ubiquitin in solution-state NMR31 (Fig. 8). The rota-
tional correlation time was determined previously, using the ROT-
DIF software.29 The analysis of relaxation data acquired at two fields
is shown in supplementary material, Sec. 3. The results obtained
with relaxation rates measured at one or three magnetic fields are
similar. ρ1 (<∼100 ps) yields relatively uniform behavior for both
one- and three-field data sets, with more motion at the C-terminus.
ρ3 (one field, ∼4 ns) and ρ4 (three fields, ∼3 ns) also exhibit simi-
lar behavior for both analyses (we indicate the approximate center
of the detector in parentheses, where the widths cover just over an
order of magnitude). Uncertainties are slightly smaller for ρ1 and
significantly smaller for ρ4 in the three-field analysis (ρ4 compared
to ρ3 in the one-field analysis), which simply results from the use
of more data (and therefore better signal-to-noise) in the three-
field analysis and not the inclusion of new information. ρ 2 (one-
field, ∼250 ps) and ρ 2/ρ3 (three-field, ∼100/500 ps) show increased
motion around residues 7–13 (β1-β2 turn), as well as more motion
at the C-terminus, with relatively little motion elsewhere. Motion
measured with ρ 2 when using only one field is split between the
two detectors ρ 2 and ρ3 when combining data from three fields,
although splitting this detector results in larger uncertainties (the
choice of number of detectors using three fields is investigated with
variants of the Akaike information criterion32–36 in supplementary
material, Sec. 4). In the multifield data set, we have also accounted
for exchange contributions to R2 relaxation,1 by including an addi-
tional detector that fits fast exchange (such that R2,ex ∝ B0

2). This
removes several distortions due to exchange, appearing primarily
in ρ(θ,S)

1 (residues 23, 25, 70), where residues exhibiting significant
exchange contributions to R2 are consistent with previous stud-
ies.37,38 Overall, we obtain an accurate dynamics detector analysis
with separation of ranges of correlation times from typical high-field
data sets.

In the current analysis, we have neglected the anisotropy of
the rotational diffusion tensor. Previously, the anisotropy under
these experimental conditions was determined to be small with
D∥/D� = 1.1831 so that the overall correlation function [CO(t)]
decays slightly slower for H–N bonds in ubiquitin parallel to the
z-component of the diffusion tensor in its principle axis system
(PAS) and slightly faster for H–N bonds perpendicular to the
z-component. This means that the correction terms, R0

ζ , may not
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FIG. 8. Detector responses for ubiquitin from R1, σNH, and R2 relaxation-rate constants acquired at one or three magnetic fields. (a) shows the detector sensitivities [ρsolu.
n (zi)]

calculated from R1, σNH, and R2 rate constants at one field (600 MHz, definition of detection vectors in supplementary material, Table S2). (b) shows the experimental detector
responses from data at this single field. (c) shows sensitivities calculated from relaxation-rate constants measured at three fields (600, 800, 950 MHz, definition of detection
vectors in supplementary material, Table S4). (d) shows the detector responses from relaxation data measured at these three fields and also shows the fitted exchange
contribution (plotted value corresponds to 600 MHz, where R2,ex ∝ B2

0). Error bars indicate the 95% confidence interval, determined by Monte Carlo error analysis (200
repetitions).13 Each plot in (b) and (d) indicates z0 and Δz, which are the center of the detector and the effective width of the detector, which approximate the average
correlation time and the range of correlation times a detector is sensitive to (both on log-scales, with precise definitions given in the supplementary material, glossary). Data
fits are found in supplementary material, Figs. S7 and S9.

fully remove all relaxation contributions due to overall tumbling
or may remove too much, depending on bond orientation. This
difference in the relaxation could be wrongly interpreted as inter-
nal dynamics. A treatment that substitutes the overall correlation
function in Eq. (13) with a correlation function for anisotropic
tumbling would improve the analysis, especially for molecules with
larger anisotropies of the rotational diffusion tensor. We are cur-
rently implementing such a scheme, which is beyond the scope of
the present paper.

We have investigated whether our results were significantly
biased by this simplification. The amount of relaxation due to tum-
bling depends directly on the orientation of the individual H–N
bond vectors relative to the diffusion tensor (strictly speaking the
orientation of the H–N dipole coupling and 15N CSA tensors, which
are not exactly aligned). For example, R2 relaxation due to tum-
bling should be faster where the bond vectors point along the z-axis
since rotational diffusion of the z-axis is slower. Therefore, we plot
the square of the z-component of the bond vector in the PAS of
the diffusion tensor (the bond vector is normalized to a length of
1, and the square is relevant for relaxation). Results are shown in
Fig. 9; there appears to be some correlation so that when [vHN]2z
becomes small, ρ(θ,S)

4 increases (residues 18–20, 35–36, especially
51–54, 63). This is somewhat expected as, for H–N bond vectors
perpendicular to the z-axis of the PAS, tumbling motion is slightly

faster than the overall correlation time, inducing faster R1 relax-
ation; this additional relaxation is underestimated in the correction
by the term R0

ζ , and then, the increased relaxation rate increases
ρ(θ,S)

4 . Although the effect is weak, it will be necessary to improve the

FIG. 9. Square of the component of the H–N bond vectors parallel with the
z-component of the diffusion tensor. There is weak correlation between increases
in [vHN]

2
z and decreases in ρ(θ,S)

4 , as seen in the comparison here ([vHN]
2
z is plot-

ted with an inverted axis for better comparison). ρ(θ,S)
4 values are the same as

those shown in Fig. 8(d).
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diffusional model for systems with larger anisotropies to avoid
significant distortions.

A. Comparison to model-free analysis
The detector analyses (Fig. 8) may be compared to a model-

free/extended model-free analysis of relaxation data sets recorded
at three magnetic fields, which is shown in Fig. 10. The model-
free analysis was performed by Charlier et al.,31 using the program
DYNAMICS.39 Model-free analysis displays some discontinuity of
the fitted parameters along the primary sequence. Discontinuity
appears to have two primary sources. The first is model selec-
tion: relaxation data are analyzed in this example with four dif-
ferent models of the correlation function. One uses either one or
two motions in the model, and in some cases, it is assumed that
the correlation time of the faster motion is too short to directly
induce relaxation so that only its amplitude is fitted. Then, mod-
els with anywhere from one to four parameters are applied ([S2

f ],
[S2

f , τf], [S2
s , τs, S2

f ], or [S2
s , τs, S2

f , τf]). Typically, if the model applied
varies from one residue to the next, it is accompanied by signifi-
cant jumps in the model parameters. For example, the β1-β2 turn
(residues 7–13) exhibits more motion than surrounding residues.
We would expect this motion to be partly correlated among these
residues so that the correlation times should be similar. Yet, between
residues 9, 10, and 11, τs varies by about half an order of mag-
nitude, with noticeable variation for the other residues as well
(where no strong variation appears in the raw data, Fig. S9). Indeed,

FIG. 10. Model-free analysis of ubiquitin high-field data as previously reported
by Charlier et al.,31 using the same data as in Fig. 8(b). (a) shows (1 − S2

f )

for the fast motion. (b) plots τf, the correlation time of the fast motion. In some
cases, S2

f is fitted but τf is not, where it is assumed τf is too short to induce
relaxation, as indicated with a downward pointing arrow (below 10 ps on the
y-axis). (c) and (d) plot slow motion, showing (1 − S2

s) and τs, respectively. In
some cases, only one motion was fitted, which is then displayed as a fast motion.

three different models were employed to analyze relaxation for
β1-β2 turn: a simple model-free model for residue 12, an extended
model-free model with no correlation time for fast motion (too
fast to be determined) for residues 7, 8, 10, and 13, and a full
extended model-free with two defined correlation times for residues
9 and 11.

The interpretation of these jumps in models and parame-
ters is not trivial: they might be due to real differences in local
motions or, perhaps more likely, to small fluctuations of the mea-
sured rates or experimental noise that skews the model selection,
one way or another. It is thus difficult to interpret all correla-
tion times as true correlation times, and it is safer to consider
these as effective correlation times, potentially representing mul-
tiple motions or motions defined by multiple correlation times.
Model selection is considered a necessary evil in order to make
the most of the information content of relaxation data sets. Alter-
natives to model selection have been suggested, where a model-
free approach40 or a different model4,5 is used consistently to
analyze an entire relaxation data set. By contrast, detectors can
be applied without model selection between residues, and when
dynamics may be explained simply (fewer parameters), some of
the detector responses simply approach zero, without requiring a
new model, significantly reducing discontinuity in the resulting
parameters.

Variation in model-free analysis parameters may also occur
without model selection. The longest stretch of residues ana-
lyzed using a single model occurs on residues 2–8 (3 param-
eters). Significant variation occurs for τs, sometimes exceeding
an order of magnitude between neighboring residues, and this
variation is accompanied by smaller jumps in (1 − S2

s), with
longer correlation times correlated with larger values of (1 − S2

s).
The strongest outliers for τs are found at residues 2 and 5, where
differences are driven by sharp reduction in R1 at these residues
(Fig. S9), which can be explained by less motion at long cor-
relation times or more motion at short correlation times [see
Figs. 5(b) and 5(d)]. In the model-free analysis, the changes
in R1 are explained as a decrease in τs and a decrease in
(1 − S2

s).
The following question arises: is there really a motion at

residues 2 and 5 with a shorter correlation time (∼10−9.2 s = 630 ps)
that is absent at the surrounding residues? The detector analysis
suggests that this does not need to be the case: ρ(θ,S)

3 is particu-
larly sensitive to this range of correlation times and shows almost
no change in detector response. Instead, it explains the decrease in
R1 at residue 2 as a decrease in motion at longer correlation times
(ρ(θ,S)

4 ), and the decrease in R1 at residue 5 as an increase in motion
at short correlation times (ρ(θ,S)

1 ). Differences in responses of the
two residues results from differences in the experimental R2 data
(Fig. S9). Note that this does not disprove the results of model-free
analysis: it is possible that the simultaneously decreasing values of
τs and (1 − S2

s) cancel each other out, resulting in the apparent
uniformity of ρ(θ,S)

3 (model-free and detector analyses should usu-
ally be consistent, but detectors can be more broadly interpreted13).
However, just as model selection requires us to consider that the
fitted correlation times may be effective correlation times, even if
only a single model is applied, we must still consider that the result-
ing parameters are effective and represent multiple motions (see
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Fig. 2). When this is the case, detectors give a more direct pic-
ture of the distributions of motion that lead to the effective model
parameters.

The limitations of the use of a single effective correlation time
were discussed in the original article by Lipari and Szabo.9 In partic-
ular, Lipari and Szabo showed that drastically different distributions
of correlation times can lead to very similar observables (see Fig. 3 of
Ref. 9), particularly when the spectral density function is only probed
at a handful of frequencies. Thus, one should keep in mind that cor-
relation times in the model-free approach are effective. By contrast,
the detector analysis provides information about the amplitude of
motion over a given range of frequencies and has a well-defined
relationship to the distribution of motion [Eq. (20)]. This informa-
tion is less model-dependent and less prone to overinterpretation.
In addition, the use of a single model to analyze relaxation rate
constants for the entire protein makes direct comparison between
given residues easier and facilitates the interpretation of variations
of detector responses.

B. Relationship to the LeMaster approach
The limits of conventional model-free analysis have motivated

development of the dynamic detector method of analysis and its
subsequent adaptation for solution-state dynamics. Other alterna-
tive methods have been proposed to analyze relaxation data sets.
For example, the spectral-density mapping method14–16 of analyz-
ing relaxation data acquired at one or several magnetic fields (R1,
R2, σNH rate constants) avoids distortion of dynamic information. It
turns out that spectral density mapping is a special case of dynamics
detectors (as previously discussed, see Ref. 13 Sec. III D). How-
ever, spectral-density mapping only yields the spectral densities at
a few frequencies. Thus, it does not provide directly quantitative
information about correlation times. In addition, spectral-density
mapping describes the total motion including tumbling, forgoing
the separation of internal motion and tumbling motion. LeMaster
addressed this limitation21 by introducing an alternative analysis
of solution-state relaxation data, acquired at a single field, which
accounts for tumbling. In his approach, he suggested fitting the
three relaxation rate constants to a spectral density of the following
form:

J(ωi) =
2
5
S2

f [S2
HS

2
N

τr

1 + (ωiτr)2 + (1 − S2
H)

τH

1 + (ωiτH)2

+S2
H(1 − S2

N)
τN

1 + (ωiτN)2 ]. (27)

Rather than having five free parameters for each residue (S2
f , S2

H, S2
N,

τH, τN, where τr is determined from the complete data set of
all residues), LeMaster proposed fixing τH = 1/(ωH + ωN) and
τN = −1/ωN so that (1 − S2

f ) is the amplitude of motion for short
correlation times, (1 − S2

H) characterizes motion for correlation
times nearest to τH, and (1 − S2

N) characterizes motion for corre-
lation times nearest to τN. This model accounts explicitly for the
bias in the frequencies at which the spectral density is probed by
relaxation.

If we rearrange the spectral density as follows

S2
f S

2
HS

2
N = 1 − (1 − S2

f S
2
HS

2
N)

= 1 − (1 − S2
f + S2

f (1 − S2
H) + S2

f S
2
H(1 − S2

N))

J(ωi) =
2
5
[ τr

1 + (ωiτr)2 + (1 − S2
f )

−τr

1 + (ωiτr)2

+ S2
f (1 − S2

H)(
τH

1 + (ωiτH)2 −
τr

1 + (ωiτr)2 )

+S2
f S

2
H(1 − S2

N)(
τN

1 + (ωiτN)2 −
τr

1 + (ωiτr)2 )], (28)

we see that the spectral density is a linear function of (1 − S2
f ),

S2
f (1−S2

H), and S2
f S

2
H(1−S2

N), with a fixed offset term. In fact, the coef-
ficients of these three terms include a negative contribution due to
internal motion attenuating relaxation from tumbling. This is simi-
lar to the design of sensitivities to internal motion [Rsolu.

ζ (zi)] in the
detector analysis [Eq. (18)].

We have derived the sensitivity of these three terms as a func-
tion of correlation time and compared them to the detector sensitiv-
ities (Fig. 11). Detector sensitivities and amplitudes of the terms in
LeMaster’s approach [Eq. (28)] are remarkably similar to the detec-
tor sensitivities for the same data set. Furthermore, the correlation
times for the maximum sensitivities of ρ 2 and ρ3, and S2

f (1 − S2
H)

and S2
f S

2
H(1 − S2

N), nearly coincide with τH and τN, the fixed corre-
lation times used by LeMaster. When comparing to detector sen-
sitivity, one notes that the amplitudes using LeMaster’s approach
become slightly more negative for some correlation times, which
may lead to small differences as compared to the detector approach.
LeMaster’s approach is a special case of the more general detec-
tor approach for relaxation data sets recorded at a single magnetic
field.

FIG. 11. Detectors vs LeMaster approach. Solid lines show three detector sensi-
tivities optimized from R1, R2, and σNH rate constants at 600 MHz, assuming a
rotational correlation time of 4.84 ns. Dashed lines show the sensitivities of the
three terms resulting from the LeMaster approach. Arrows indicate the position
of τH and τN. One sees that the resulting behavior is very similar, although the
LeMaster approach results in more regions of negative sensitivity.
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IV. CONCLUSIONS
Dynamics detectors have been developed to characterize distri-

butions of motion of arbitrary complexity using solution-state NMR
relaxation data. A set of detectors is optimized for a given exper-
imental relaxation data set, where each detector characterizes the
amount of motion for a well-defined range of correlation times.
The approach is an adaptation of the concept developed for solid-
state NMR relaxation data. We obtain detectors that are sensitive
to the internal motion of a molecule tumbling in solution but are
not sensitive to the tumbling motion itself. This is accomplished
by defining rate-constant sensitivities to the internal motion for
molecules tumbling isotropically in solution and obtaining detec-
tors from these sensitivities. Detector analysis does not suffer from
the biases of model-free/extended model-free analyses of relaxation
data: when using model-free formalism to analyze relaxation data
with an underlying complex distribution of motion, the results are
difficult to interpret in terms of the physical motion. We apply the
detector method to the analysis of 15N relaxation rate constants in
ubiquitin and find a more easily interpretable and stable description
of internal dynamics than is obtained with conventional model-free
analysis. This demonstrates the utility of the detector approach in
solution-state NMR.

SUPPLEMENTARY MATERIAL

See supplementary material attached to this manuscript that
contains a glossary of new terminology for detector analysis, a
detailed explanation of detector design using singular value decom-
position, an investigation into model selection criteria (number of
detectors), analysis of a two-field data set, plots of the experimental
data fits, and tables of detection vectors used for fitting.
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