
 1 

Supplementary Information for: 

INFOS: Spectrum Fitting Software for NMR Analysis  

Albert A. Smith* 

ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland 

A.S.: alsi@nmr.phys.chem.ethz.ch 

 

 
INFOS User Manual 

Albert A. Smith 
 

Note that the software provided with INFOS is copyrighted by Albert Smith, under the terms 

of the GNU General Public License. It may be downloaded at infos.sourceforge.net. 

 

Contact:  alsi@nmr.phys.chem.ethz.ch (ETH-Zürich email) 

  alsi-nmr@users.sourceforge.net (INFOS email) 

   

 

mailto:alsi@nmr.phys.chem.ethz.ch
mailto:alsi@nmr.phys.chem.ethz.ch
mailto:alsi-nmr@users.sourceforge.net


 2 

 

Table of Contents 
1. GETTING STARTED 5 

1.1. DESCRIPTION 5 
1.2. BASIC FITTING: THE FITSPEC FUNCTION 5 
1.3. SUMMARY OF OPTIONS 6 

1.3.1. Restricting fit variables 6 
1.3.2. Lineshape settings 7 
1.3.3. Iteration settings 7 
1.3.4. Peak addition/removal settings 8 
1.3.5. Advanced options 8 

1.4. ADDITIONAL PROGRAMS 8 
1.5. FEATURES AND LIMITATIONS 9 

1.5.1. Handling of large spectra 9 
1.5.2. Shape generation from acquisition and processing information 9 
1.5.3. Peak addition, removal, splitting, and combination 10 
1.5.4. Notes on parallelization 10 

2. FITSPEC INPUT AND OUTPUT STRUCTURES 11 
2.1. ‘SPEC’ STRUCTURE: SPECTRUM, ACQUISITION, AND PROCESSING INFORMATION 11 

2.1.1. spec.fX 11 
2.1.2. spec.S 11 
2.1.3. spec.NucX 11 
2.1.4. spec.par 11 
2.1.5. spec.title 12 

2.2. ‘PAR’ STRUCTURE: USER INSTRUCTIONS FOR FITSPEC 12 
2.2.1. par.grid 12 
2.2.2. par.IterFact 13 
2.2.3. par.add_peaks 13 
2.2.4. par.n_iter 13 
2.2.5. par.cutoff 14 
2.2.6. par.noise_frac, par.n_noise_pks 14 
2.2.7. par.npp 15 
2.2.8. par.control 15 
2.2.9. par.sign 16 
2.2.10. par.noise 16 
2.2.11. par.verbose 16 



 3 

2.2.12. par.rangeX 17 
2.2.13. par.lw_rangeX 17 
2.2.14. par.min_lwX, par.max_lwX 17 
2.2.15. par.fixed 18 
2.2.16. par.accur 18 
2.2.17. par.setup_only 18 
2.2.18. par.noise_eval 19 
2.2.19. par.parallel 19 

2.3. D1, …, DN SUB-STRUCTURES: LINESHAPE INFORMATION 19 
2.3.1. Acquisition and processing information 19 
2.3.2. Signal decay information 20 
2.3.3. Apodization function definitions 21 
2.3.4. Linear phase compensation 22 

2.4. ‘FIT’ STRUCTURE: OUTPUT OF FITSPEC 22 
2.4.1. Peak parameters 22 
2.4.2. Noise analysis and error evaluation 23 
2.4.3. Other outputs 26 

2.5. ‘FIT0’ STRUCTURE: INITIAL FITS AND CONTROLLING FIT VARIABLES 27 
2.5.1. Initial guess 27 
2.5.2. Fitting restrictions 27 

2.6. ‘SHAPES0’ CELL: USER SPECIFIED LINESHAPES 28 
2.7. ‘SHAPES’ CELL: RECYCLING LINESHAPES FOR SIMILAR SPECTRA 30 

3. SUPPLEMENTARY PROGRAMS 31 
3.1. DATA IMPORT AND EXPORT 31 

3.1.1. getSpecBruker 31 
3.1.2. getSpecPipe 32 
3.1.3. spec2Bruker 33 
3.1.4. XEasy_write 33 

3.2. PEAK PICKING AND LINEWIDTH MEASUREMENT 34 
3.2.1. peaks_nD 34 
3.2.2. FWHM_nD 35 

3.3. SPECTRUM MANIPULATION 35 
3.3.1. clip_spec_nD 36 
3.3.2. proj_nD 36 
3.3.3. slice_nD 36 
3.3.4. add_spec_nD 37 
3.3.5. combine_specs 37 
3.3.6. baseline_corr 37 



 4 

3.4. SPECTRUM GENERATION 37 
3.4.1. FullSpecCalc 38 
3.4.2. noise_gen 38 

3.5. PLOTTING 39 
3.5.1. quik_2Dplot 40 
3.5.2. qk_3Dplot 41 
3.5.3. qk_iso3Dplot 41 
3.5.4. slice_disp 42 

3.6. ADDITIONAL FITTING PROGRAMS 42 
3.6.1. FitEditor2D 42 
3.6.2. FitTrace 45 
3.6.3. PartialFit 47 
3.6.4. FitError 48 

 



 5 

1. Getting Started 

1.1. Description 
The INtelligent Fitting Of Spectra (INFOS) is a software package written in MATLAB, 

intended for fitting of spectra with many resonances, in order to better quantify peak 

amplitudes and integrals, improve peak positioning, and improve identification and 

separation of peaks, as compared to methods such as integration and standard peak 

picking. INFOS is able to handle large spectra and large numbers of peaks by breaking 

spectra into parts and fitting the sub-spectra, and iteratively recombining and refitting the 

sections. Additionally, INFOS uses pre-calculated lineshapes to accelerate spectrum 

calculation. Processing and acquisition information is used to generate lineshapes for 

fitting, therefore producing improved fits. Optional peak picking is done iteratively in 

combination with fitting; periodic addition, removal, splitting, and combination of peaks are 

interleaved with re-optimization of the spectrum fit. Statistical methods are used to establish 

the level of noise and of peaks, and in order to determine whether spectral features result 

from one or more peaks. INFOS combines ease of use with flexibility; all settings for fitting 

can be calculated internally by the program, however, almost all fitting settings can be 

controlled by the user in order to either improve fitting or accelerate calculations. Further 

details and examples of applications are provided in the accompanying publication. 

1.2. Basic fitting: the FitSpec function 
Fitting a spectrum may be done completely within the FitSpec function. FitSpec may either 

optimize a given peak list by varying position, amplitude, and/or linewidth, or may perform 

the peak picking as well, with periodic modification of the peak list to optimize the spectrum 

fit. We will refer to the former case as a fixed peak list and the latter as a dynamic peak list. 

Additionally, settings controlling the behavior of FitSpec may be determined internally or 

fitting instructions may be provided by the user. The commands are formatted as follows. 

With a dynamic peak list, without any user instructions: 

fit=FitSpec(spec); 

or with a dynamic peak list, with additional user instructions: 

fit=FitSpec(spec,par); 

In the first case, the program uses all default options, some of which are calculated during 

the program run depending on properties determined from the ‘spec’ structure. In the 

second case, the user determines some of these options, and specifies them in the ‘par’ 



 6 

structure. The ‘spec’ structure contains the experimental spectrum and frequency axes (in 

ppm), and also may contain acquisition and processing information for the spectrum. The 

fields and their form for ‘spec’ are detailed in 2.1. The ‘par’ structure contains instructions 

for spectrum fitting, which is detailed in 2.2. The output structure, ‘fit’, contains lists of peak 

positions, linewidths, amplitudes, and integrals, as well as the calculated spectrum and 

error spectrum, and information on the analysis of the fit. Details are found in 2.3. 

With a fixed peak list, without any user instructions: 

fit=FitSpec(spec,[],fit0); 

or with a fixed peak list, with additional user instructions: 

fit=FitSpec(spec,par,fit0); 

As before, the ‘par’ structure is optional, but now an initial fit is given in ‘fit0’. ‘fit0’ has a very 

similar form as ‘fit’, and one may use the output of another fitting run in the ‘fit0’ argument. 

‘fit0’ also may containing additional fields to restrict how variables are changed (fixing 

parameters or setting ranges on the parameters). This is described in 2.5. Note that when 

‘fit0’ is provided, then peak position/linewidth/amplitude are optimized, but by default, the 

peak list itself is not changed (no peaks added or removed). This can be overridden with 

user settings in the ‘par’ structure. 

1.3. Summary of options 
Here we summarize the options for the FitSpec function. All options have default values, so 

do not need to be user specified, but it is often useful to have control over some of these. 

Details on setting the individual fields found in the ‘spec’, ‘par’, and ‘fit0’ structures are given 

in section 2.  

1.3.1. Restricting fit variables 

The FitSpec function allows restriction of fit variables, either by establishing allowed ranges 

for those variables or by locking variables in place. If an initial fit is given, then the ‘fit0’ 

structure may contain the field ‘fit0.fixed’ (or alternatively, ‘par’ may contain ‘par.fixed’). This 

variable allows one to lock all intensities, peak positions, and/or linewidths separately for 

each dimension. Also, if an initial fit is given, then ‘fit0’ may have fields ‘fit0.rangeX’ and 

‘fit0.lw_rangeX’ which give upper and lower bounds for peak position and linewidth, 

respectively, for each peak (X is the dimension number). Then, one may restrict each peak 

differently if desired. Typically, it is not a good idea to use these options if the peak list is 

not fixed (i.e. peaks are going to be added during the fit), although it is possible. 



 7 

 Alternatively, one may specify restrictions on fit variables in the ‘par’ structure. 

‘par.rangeX’ and ‘par.lw_rangeX’ restrict peak position and linewidth, but are a single 

element in the ‘par’ structure, and restrict the variation of peak position and linewidth from 

its initial position (+/– half the value given in ‘par.rangeX’ or ’par.lw_rangeX’). One may also 

restrict the maximum and minimum linewidths of all peaks using ‘par.max_lwX’ and 

‘par.min_lwX’. These options may be used with non-fixed peak lists, but care should be 

taken to not over-restrict the fit. 

1.3.2. Lineshape settings 

Parameters describing lineshapes for a given dimension may be placed in two different 

locations. The ‘spec’ structure stores these in ‘spec.par.dX’, and the ‘par’ structure stores 

them in ‘par.dX’. If the FitSpec function encounters the same parameter in both structures, 

it will use the value in ‘par.dX’. Typically, one stores acquisition and processing information 

in the ‘spec’ structure, but specifies the type of signal decay in the ‘par’ structure, although 

the FitSpec function does not require this convention. 

 Currently, INFOS provides import functions for Bruker Topspin data, which is 

described in section 3.1.1. This imports all necessary acquisition and processing 

parameters. The definitions for these parameters are detailed in 2.3. In addition to 

acquisition and processing parameters, the type of decay may be specified. Here, options 

are Gaussian and Lorentzian decay (corresponding to signals that decay with Gaussian 

and exponential functions). This is specified in ‘par.dX.Broad’, as ‘gauss’ or ‘lorentz’. One 

may also specify a fixed mixture of Gaussian and Lorentzian broadening, as ‘mixXX’ where 

XX/100 is the fraction of Gaussian broadening. One may also include a fixed amount of 

Lorentzian or Gaussian linewidth, specified in ‘par.dX.lorentz0’ and ‘par.dX.gauss0’. The 

default if not specified is pure Gaussian decay.  

1.3.3. Iteration settings 

The FitSpec function uses iterative fitting both when using a fixed peak list, and when 

adding peaks. When using a fixed peak list, ‘par.IterFact’ and ‘par.n_iter’ control the number 

of iterations within a sub-spectrum fit and number of fit iterations over the whole spectrum. 

When using a dynamic peak list, an additional parameter, ‘par.add_peaks’, controls the 

number of times that peaks will be added and removed. Setting this equal to zero will fix the 

peak list, which is the default if ‘fit0’ is provided. See section 2.2 for details of the ‘par’ 

structure. 



 8 

1.3.4. Peak addition/removal settings 

If the peak list is being edited during fitting, then four functions are used to modify the list, 

one which adds peaks to badly fit regions, one which removes peaks that do not 

significantly improve the fit, one which splits single peaks into multiple peaks, and one 

which combines pairs of peaks into single peaks. Decisions to add, remove, or split peaks 

is determined based on whether or not noise exceeds a given cutoff, specified by 

‘par.cutoff’. Decisions to combine peaks are determined by calculating whether peak 

combination raises the noise level less than is expected from removing a noise peak. The 

parameter giving the relative expected change is the noise per peak, given in ‘par.npp’.  

 At each step of peak addition, add, remove, split, and combine functions may be run. 

By default, none of these run after the last fit optimization (such that peaks are not added or 

removed without another chance to optimize parameters), and only remove and combine 

functions run immediately before the last fit optimization. Otherwise, all functions run. 

However, the user may take full control over which functions run at each step in the 

‘par.control’ field, described in 2.2.8.  

 The final option in peak addition is the sign of peaks. Peaks may be all positive, all 

negative, or both. This is determined in the ‘par.sign’ field (‘+’,’–‘,’+–‘).  

1.3.5. Advanced options 

As a fourth argument to the FitSpec function, one may provide a cell, ‘shapes0’, which 

allows usage of user-defined lineshapes. Usage and the form of this cell are detailed in 2.6. 

A fifth argument, ‘shapes’, may be also provided, which contains lineshapes for sub-spectra 

and should be generated with the FitSpec function as discussed in 2.7. 

1.4. Additional programs  
INFOS provides additional fitting programs that setup and use the FitSpec function for 

particular applications. The first of these is the FitTrace function (section 3.6.2), which 

simultaneously fits a series of spectra for which the amplitudes in those spectra are 

described by some user defined function, for example for fitting exponential decay in a time 

series of spectra. The second program is FitError (section 3.6.4), which analyzes a fit 

calculated with the FitSpec function to determine the approximate error on the various fitting 

parameters. Finally, FitEditor2D (section 3.6.1) can be used to interactively edit a fit of a 2D 

spectrum. 



 9 

1.5. Features and limitations 

1.5.1. Handling of large spectra 

The INFOS fitting algorithm is able to handle fitting of large spectra with many peaks by 

breaking the spectrum into sections and fitting each of these. Breaking the spectrum into 

small sub-spectra makes the individual fit optimization simpler, and therefore less 

demanding on memory and computer time. However, if sections become too small, peaks 

overlap between sections and fitting becomes worse, since fits of individual sections 

become highly interdependent. The FitSpec function calculates sizes of the sub-spectrum, 

which is optimized for most spectra. However, spectra with many peaks by default have 

smaller sub-spectra, which makes fitting of broad peaks more difficult. In the case that a 

large range of linewidths exists in a spectrum, then may be useful to decrease the number 

of sub-spectra from the default, using ‘par.grid’ (see section 2.2).  

1.5.2. Shape generation from acquisition and processing information 

INFOS improves fit quality by generating lineshapes based on acquisition and processing 

information. Shapes are generated by processing either Gaussian and/or Lorentzian signal 

decay, according to the acquisition time, spectrum width, processed resolution, and the 

apodization function. The shapes are then generated for a range of linewidths, which are 

applied in the spectrum fitting. This calculation is done during setup, and then is stored for 

later use in the program, contributing significantly to the fitting speed.  

 Because lineshape calculations are done during setup and stored, the FitSpec 

function is limited to only one variable describing the linewidth. Therefore, optimizing mixes 

of Gaussian and Lorentzian lineshapes separately for each peak is not possible. However, 

one may specify a fixed amount of Gaussian or Lorentzian line-broadening to be applied to 

all peaks, and optimize the other type of broadening. Additionaly, one may specify a 

particular fraction of Gaussian and Lorentzian broadening, so that both widths vary 

proportionally according to the given fraction. Specification of acquisition and processing 

parameters, and signal decay is described in section 2.3. One may go further and specify 

arbitrary lineshapes. This is considerably more complicated to setup, but is executed by 

giving a cell, ‘shapes0’, which contains structures for each dimension that contain the 

lineshapes. This cell is described in section 2.6. 

 The major limitation to this method of lineshape generation is that only one 

optimization variable may describe the lineshape. This is helped by the ability to add some 

Lorentzian character to Gaussian lineshapes and vice versa. A second limitation is that 



 10 

lineshapes may not be correlated between dimensions. For example, if a lineshape is the 

result of a poor shim leaving a foot, then that foot should extend diagonally between two 

dimensions. However, even if an arbitrary lineshape is specified by the user to include the 

foot, it will not appear diagonally across the dimensions since this would require correlation 

of lineshapes between the dimensions. 

1.5.3. Peak addition, removal, splitting, and combination 

If a fixed peak list is not used, then INFOS attempts to optimize the peak list, such that the 

spectrum is well fit, but fitting of noise is minimized. A cutoff is used to determine what peak 

height is no longer considered noise, and is used to add/remove/split peaks. If no user 

settings are given, then the FitSpec function will analyze the noise level, and the peak 

heights and attempt to set the cutoff for noise such that ~1% of peaks that are fitted are 

statistically likely to be noise. Furthermore, FitSpec will determine how well a peak can fit 

the noise in the spectrum, and use this information to decide when combining peaks 

reduces over-fitting of the spectrum. 

 These methods of evaluating the noise for fitting are powerful in obtaining optimal fits 

of spectra. However, the main limitation here is that they avoid over-fitting only noise. 

Therefore, artifacts above the noise level will be fit. Poor baselines are a severe problem in 

this case. A constant offset will cause mis-evaluation of noise, and uneven baselines will 

make defining a good noise cutoff impossible. Additional problems will arise if the selected 

lineshape type (‘gauss’, ‘lorentz’, ‘mixXX’) is not a good match for the experimental data, so 

that FitSpec will add extra peaks to fit out the mismatch.  

1.5.4. Notes on parallelization 

INFOS uses parallelization for some calculations if a ‘Matlabpool’ is available, using the 

‘parfor’ function. However, not all operations in INFOS are possible in parallel. Therefore, 

parallelization will usually speed up INFOS calculation, but for N cores, INFOS may be far 

from gaining the full Nx speed-up desired. This should be considered when running on 

shared clusters, or any system for which resources could be used more efficiently.  

 Specifically, the FitSpec function fits sub-spectra in parallel, but must reconstruct the 

fit and spectrum in between fitting iterations in series, and must also perform dynamic peak 

list editing in series. In contrast, the FitError function runs fully in parallel and is usually an 

efficient usage of parallelization. The FitTrace function runs initial fitting fully in parallel (see 

section 3.6.2), but the latter fitting of the full spectrum runs with the same limitations as the 

FitSpec function. Finally, one should note that fits for which many parameters are fixed, the 



 11 

ratio of communication overhead to the cores versus time savings from parallelization can 

become unfavorable. Alternatively, if multiple spectra must be fit, using a ‘parfor’ loop 

around the fits is typically the more efficient usage of computational resources. See section 

2.2.19 for details on controlling parallelization. 

2. FitSpec Input and Output Structures 

2.1. ‘spec’ structure: Spectrum, acquisition, and processing Information 
The spectrum is stored in the ‘spec’ structure, in addition to all relevant acquisition and 

processing information. The user may also opt to store signal decay information in the 

‘spec’ structure, but since this information is not obtained from the experimental data files, it 

is more typically stored in the ‘par’ structure. The following describes the fields so that the  

user may create the ‘spec’ structure, but it may also be quickly generated from Topspin files 

with the ‘getSpecBruker’ function, described in 3.1.1.  

2.1.1. spec.fX 

These vectors (X is the dimension number) give the frequency axis, in ppm, for each of the 

dimensions. The size is 1 X n, for a dimension with n points, and the points are in 

ascending order. 

2.1.2. spec.S 

This is an array containing the intensity data of the real part of the spectrum. The 

dimensionality of the matrix needs to match the dimensionality of the spectrum, and the 

array dimensions should correspond in size and order with the spec.fX vectors 

2.1.3. spec.NucX 

This is a string specifying the nucleus, typically in the form  ‘1H’ or ‘15N’ for example. These 

fields are not necessary for spectrum fitting, but may later be useful for exporting results, or 

in faster labeling of spectrum plots. 

2.1.4. spec.par 

This field contains the fields ‘spec.par.dX’ for each dimension, which then contain relevant 

acquisition and processing information, and are further described in 2.3. They are optionally 

provided in the ‘spec.par’ parameter or in the ‘par’ parameter for the FitSpec function. This 

information may be omitted, in which case the program will default to fitting with pure 



 12 

Gaussian lineshapes (or Lorentzian if specified), but better performance is expected if the 

information is provided. 

2.1.5. spec.title 

This field provides the title for the spectrum. This is not used for spectrum fitting, but is 

useful for labeling of plots, and will be exported if writing to the Topspin format. 

2.2. ‘par’ structure: User instructions for FitSpec 
The FitSpec function is capable of fully automated spectrum fitting, without additional user 

instructions aside from the spectrum itself. However, many situations will require some 

adjustments by the user to fully optimize the fitting. The ‘par’ structure gives the user control 

over most aspects of the spectrum fitting. The details of each field for user instructions is 

given here, although one should also note that the ‘par’ field is output by the FitSpec 

function as ‘fit.par’, and contains the settings either chosen by FitSpec or set by the user. 

This is useful when optimizing fitting parameters, as one can see the initial parameter 

settings determined by FitSpec, and then optimize those deemed to be suboptimal. 

2.2.1. par.grid 

The FitSpec function breaks the spectrum into sub-spectra, which are fitted individually, and 

then periodically recombined. The number of sub-spectra is determined by ‘par.grid’, which 

is a 1 X N vector, where N is the number of dimensions. Each element of ‘par.grid’ specifies 

how many parts that dimension should be separated into, so that the total number of sub-

spectra is the product of the values in ‘par.grid’. Large values in ‘par.grid’ will accelerate 

fitting, since the size of each sub-spectrum is reduced, but peaks that overlap strongly into 

other sections will be fit less accurately. Usually, default settings are sufficient, but spectra 

with peaks that are quite broad in comparison to the spectrum resolution may not fit well 

with the default values of ‘par.grid’. The best remedy for this is to process with fewer data 

points, but if this is not possible due to a mix of broad and narrow peaks, then one may 

reduce the values of ‘par.grid’.  

 

3 entries for a 3D spectrum: 

par.grid=[10 10 5]; 



 13 

2.2.2. par.IterFact 

Each sub-spectrum is fitted separately, using a gradient-based minimization routine. The 

number of fitting iterations in this fitting routine is determined by taking the product of 

‘par.IterFact’ with the number of fitting variables describing the sub-spectrum. Increasing 

‘par.IterFact’ will improve fitting accuracy, but often returns are diminishing. 

 

1 entry: 

par.IterFact=3 

2.2.3. par.add_peaks 

When using a dynamic peak list, ‘par.add_peaks’ determines how many times the peak list 

will be edited. After initial peak picking, and fitting the initial peaks, the peak list is edited to 

try to optimize the fit. This is given by a single value in ‘par.add_peaks’, so that the total 

number of loops over the fitting step is ‘par.add_peaks’+1. Complicated spectra may benefit 

from additional peak addition steps, so ‘par.add_peaks’ may be increased. Also, if an initial 

fit is given to the program, then by default, FitSpec assumes a fixed peak list, so that 

‘par.add_peaks’ is set to zero, although this will be overridden in the user sets 

‘par.add_peaks’ to be non-zero. 

 

For 3 steps of peak addition (dynamic peak list): 

par.add_peaks=3; 

 

2.2.4. par.n_iter 

After each sub-spectrum is fitted, the fit is recombined to correct for peak overlap among 

sub-spectra, after which the fitting of sub-spectra is repeated. The number of repetitions is 

determined by ‘par.n_iter’. If a dynamic peak list is being used, then the iterative fitting is 

repeated after each peak addition/removal step. This means that the number of iterations 

must be specified at each step. Thus, the number of elements in ‘par.n_iter’ must be equal 

to ‘par.add_peaks’+1. As with ‘par.IterFact’, increasing the values in ‘par.n_iter’ will improve 

fitting, but improvements will be reduced as values get higher. However, because 

‘par.n_iter’ changes the number of iterations that include corrections for peak overlap, 

increasing the value of ‘par.n_iter’ is often more beneficial than increasing the value of 

‘par.IterFact’. 

 



 14 

For ‘par.add_peaks=5’: 

par.n_iter=[3 3 3 3 3 6]; 

2.2.5. par.cutoff 

When using a dynamic peak list, the FitSpec function defines a particular peak height 

which, when exceeded, considers a peak as signal, and when below this height, is 

considered as noise. This definition varies, and is given one value for the initial peak 

picking, and then is typically decreased at the first several steps of peak list editing. Thus, 

par.cutoff must be a vector with ‘par.add_peaks’+2 elements. ‘par.cutoff’ is defined relative 

to the maximum peak height in the spectrum, so that one gives the fraction of the largest 

peak to be defined as the cutoff. The last value in the ‘par.cutoff’ vector indicates the cutoff 

for adding/removing peaks after the last fitting iteration. Since this is typically undesirable 

for fitting, the default for the last value is ‘NaN’ (not a number, which is an allowed value in 

MATLAB).  

 Note that during the program run, ‘par.cutoff’ must take on several different values, 

however, the user may specify a single value, in which case this will be set to the second to 

last value of ‘par.cutoff’ (the last value is NaN), and the other values will be calculated by 

FitSpec. Usually, this is the simplest method of setting the cutoff.  

 The FitSpec function will calculate the cutoff values by default, considering noise in 

the spectrum. The value is picked so that approximately 1% of the fitted peaks are noise. 

However, FitSpec is not able to take spectrum artifacts into account (pickup, incomplete 

phase cycling, residual water peak, etc.), and deviations of the experimental peak shapes 

from the calculated peak shapes are not considered. For this reason, the user may find that 

increasing ‘par.cutoff’ from the default value leads to fewer fittings of artifacts and irregular 

peak shapes. Also, different degrees of noise fitting may be desired, which can be adjusted 

directly with ‘par.cutoff’, or with the ‘par.n_noise_pks’ and ‘par.noise_frac’ fields. 

 

For ‘par.add_peaks=5’: 

par.cutoff=[.2 .1 .05 .05 .05 .05 NaN]; 

2.2.6. par.noise_frac, par.n_noise_pks 

‘par.noise_frac’ and ‘par.n_noise_pks’ are indirect methods of setting the cutoff level. When 

either parameter is specified, the FitSpec function will determine a probability distribution of 

the noise peaks in the spectrum, from which it can estimate the number of noise peaks that 

will be above a given cutoff level. If ‘par.n_noise_pks’ is set, then this estimate can be used 



 15 

to set the cutoff so that the expectation value of the number of noise peaks above the cutoff 

is approximately equal to ‘par.n_noise_pks’ (the exact expectation value is given in 

‘fit.noise.n_fit_noise_pks’). If ‘par.noise_frac’ is set, then the cutoff is set by estimating the 

number of noise peaks and total number of peaks to be fitted, and approximates their ratio 

to be equal to ‘par.noise_frac’. Since it is not straightforward to estimate the total number of 

peaks that will be fitted, this will not be exactly correct, but the expectation value of the 

number of fitted noise peaks is still returned in ‘fit.noise.n_fit_noise_pks’. 

 

For 0.5 % of peaks fit to be noise: 

par.noise_frac=.005; 

For 10 noise peaks to be fit: 

par.n_noise_pks=10; 

For no noise (approximately) to be fit: 

par.n_noise_pks=0; 

2.2.7. par.npp 

‘par.npp’, which stands for ‘noise per peak’ controls when two peaks are combined into a 

single peak, during the peak addition/removal steps. Noise per peak indicates how much 

noise a single peak can fit, on average. Therefore, if having two peaks compared to one 

peak fails to reduce the error by at least the value given in ‘par.npp’, then the peaks will be 

combined, since this indicates that having two separate peaks is likely an overfit. Note that 

the input value of ‘par.npp’ is scaled relative to the maximum peak height. Therefore, the 

value is typically on the order of magnitude of ‘par.cutoff’. FitSpec will automatically 

calculate ‘par.npp’, but it may be manually input. Larger values will result in more frequency 

combination of peaks (fewer fitted peaks).  

 

For a typical fitting (S/N~10): 

par.npp=.08; 

2.2.8. par.control 

When using a dynamic peak list, each step of peak addition typically executes peak 

addition, subtraction, splitting, and combining. The exception is before the last fit iteration, 

only peak removal and combination are executed. However, these settings may be edited 

with the ‘par.control’ parameter. ‘par.control’ is a 4 x (par.add_peaks+1) sized array with 

logical values. After the nth fitting, the nth column determines which of the four peak editing 



 16 

steps are performed. The rows are in the following order: add peaks, subtract peaks, split 

peaks, combine peaks (1=use method, 0=do not use method). 

 

For ‘par.add_peaks’=4: 

par.control=[1 1 1 0 0;1 1 1 1 0;1 1 1 0 0;1 1 1 1 0]; 

2.2.9. par.sign 

By default, FitSpec assumes all peaks are positive. However, setting ‘par.sign’ to ‘+’, ‘–‘, or 

‘+–‘ will change this to positive, negative, or  positive and negative peaks. 

 

For positive and negative peaks: 

par.sign=‘+–’; 

2.2.10. par.noise 

The FitSpec function analyzes the spectrum noise for the determination of the ‘par.cutoff’ 

and ‘par.npp’ parameters, and later returns the noise analysis. If ‘par.noise’ is not specified, 

then the entire spectrum is sampled for noise. To filter out real peaks, noise peaks are 

determined to be those which are concave up and negative if ‘par.sign’ is set to ‘+’, and the 

opposite if set to ‘–‘. If ‘par.sign’ is set to ‘+–‘, then all peaks are taken. However, ‘par.noise’ 

may be used to specify a region or regions of a spectrum that contain only noise. ‘par.noise’ 

is a vector, or cell of vectors if multiple regions are specified. Each vector consists of first 

the lower bound of the region in the first dimension, followed by the upper bound of the first 

dimension, and then followed similarly in subsequent dimensions. 

 

For three noise regions, specified in a 2D spectrum: 

par.noise={[75 120 75 120],[75 120 140 170],[140 170 75 120]};   

2.2.11. par.verbose 

By default, FitSpec outputs a status at the end of each fitting step. This may be suppressed 

using ‘par.verbose’. 

 

For no output: 

par.verbose=0; 



 17 

2.2.12. par.rangeX 

For each dimension, X, one may specify the range (in ppm) that the peak positions may 

vary. Using a peak list with initial peak positions ‘fit0.deltaX’, the peaks may then move only 

between ‘fit0.deltaX–par.rangeX/2’ and ‘fit0.deltaX+par.rangeX/2’. This is useful if the peak 

positions are approximately known, but some variability is need to optimize the fitting. One 

typically only uses this setting with fixed peak lists, although when used with a dynamic 

peak list, then this will restrict the peak positions relative to their initial placement. This 

usage may cause poor fitting, however, since the initial peak placement may be somewhat 

far from the correct position. ‘par.rangeX’ only accepts one argument. 

 

For the 1st dimension: 

par.range1=.5; 

2.2.13. par.lw_rangeX 

For each dimension, X, one may restrict the range (in ppm) that the linewidth may vary. If 

‘par.lw_rangeX’ is specified, then the linewidth may vary approximately between ‘fit0.lwX–

par.lw_rangeX/2’ and ‘fit0.lwX+par.lw_rangeX/2’. Note that this is only approximate, since 

the allowed linewidths are discrete values, and so FitSpec chooses the nearest linewidth. 

As with ‘par.rangeX’, this is typically used only with fixed peak lists, although if specified 

when using a dynamic peak list, it will restrict the linewidths relative to their initial values. 

 

For the 2nd dimension 

par.lw_range2=.25; 

2.2.14. par.min_lwX, par.max_lwX 

For each dimension, X, one may specify a maximum and/or a minimum linewidth (in ppm), 

using ‘par.min_lwX’ and ‘par.max_lwX’. This will affect the lineshape generation, so that 

lineshapes are only calculated between the values of ‘par.min_lwX’ and ‘par.max_lwX’, or if 

only one of these is specified, then a default value is used for the other. Note that specifying 

‘par.max_lwX’ will also cause some peaks to be split after peak picking, if their initial 

linewidth is broader than the specified maximum value. 

 

For the 1st dimension, restricting both minimum and maximum: 

par.min_lw1=.25; 

par.max_lw1=2; 



 18 

2.2.15. par.fixed 

If one is using a fixed peak list, it is possible to restrict which variables can be changed, by 

specifying ‘par.fixed’, or alternatively ‘fit0.fixed’ (both fields are equivalent). The ‘.fixed’ field 

is a logical with 2N+1 entries, N being the number of dimensions. The first entry specifies 

whether the peak amplitudes are fixed, the second and third entries specify whether to fix 

the peak positions and linewidths, respectively, of the first dimension, and subsequent 

dimensions follow.  

 

For a 2D spectrum, with the amplitudes and linewidths variable, but positions fixed: 

par.fixed=[0 1 0 1 0]; 

[Amplitude, Position 1, Linewidth 1, Position 2, Linewidth 2] 

2.2.16. par.accur 

‘par.accur’ specifies the accuracy for which peak shapes are calculated. Specifically, when 

lineshapes are initially calculated, if the ratio of the value at a particular position and the 

maximum of the lineshape falls below ‘par.accur’, then the value at that position is set to 

zero. Therefore, the closer ‘par.accur’ is to zero, the fewer truncation artifacts. Defaults are 

1% of the minimum of ‘par.cutoff’, when using a dynamic peak list, or 1% of the ratio of the 

minimum initial peak height and maximum initial peak height, when using a fixed peak list. 

Higher values of ‘par.accur’ will accelerate calculation of full spectra in the FitSpec function, 

although eventually may lead to significant artifacts in the calculated spectra. 

 

For no lineshape truncation: 

 par.accur=0; 

2.2.17. par.setup_only 

‘par.setup_only’ accepts a string, ‘y’, or ‘n’. When set to ‘y’, the FitSpec function will not fit 

the given spectrum, but rather will only determine the parameters in the ‘par’ structure and 

perform the initial peak pick/linewidth measurement. This is useful if one wants to see how 

the fit will be setup before running the entire fitting routine.  

 

For setup only: 

par.setup_only=’y’; 

 



 19 

2.2.18. par.noise_eval 

By default, the FitSpec function only performs noise analysis (see section 2.4.2) if it is 

necessary for setting the fitting parameters (‘par.cutoff’ and ‘par.npp’). Therefore, if a fixed 

peak list is used, or the user specifies both ‘par.npp’ and ‘par.cutoff’, then FitSpec does not 

perform noise analysis. However, if ‘par.noise_eval’ is set to ‘y’, then analysis will be 

performed anyway. 

 

For noise evaluation: 

par.noise_eval=’y’; 

2.2.19. par.parallel 

INFOS will automatically use parallelization if a ‘Matlabpool’ is available (via the ‘parfor’ 

function). It will not start the pool automatically. The user may override the automatic 

settings by setting ‘par.parallel’ to ‘y’ or ‘n’. This will either force INFOS to use a ‘parfor’ loop 

or a ‘for’ loop, respectively.  

 

To disable parallelization 

par.parallel=’n’; 

2.3. d1, …, dn sub-structures: Lineshape information 
For each dimension, the lineshapes are specified by supplying acquisition and processing 

information, and also by specifying the type of signal decay (Lorentzian and Gaussian, for 

example). This information is provided, for dimension X, in the substructures ‘spec.par.dX’, 

or ‘par.dX’. Both locations may be used simultaneously, although if a parameter is specified 

twice, then the value in ‘par.dX’ takes priority. Typically, one specifies the acquisition and 

processing information in ‘spec.par.dX’, since this information is known for the particular 

spectrum and will not change, and information on signal decay in the ‘par.dX’ structure, 

since one may want to test different values here to improve fitting. 

2.3.1. Acquisition and processing information 

This information is loaded by the ‘getSpecBruker’ function, so usually does not need to be 

specified by the user, but other formats may require manual specification. 

 dX.WDW: Specifies the window function. May be a string or number. See 2.3.3. 

 dX.SSB:  Sinebell broadening parameter. 

 dX.GB:  Gaussian broading parameter. 



 20 

 dX.LB: Lorentzian broadening parameter, in Hz. 

 dX.AQ: Processed acquisition time, in s. 

 dX.SI:  Processed size before spectrum truncation. 

 dX.SIp: Processed size after spectrum truncation. 

 dX.TD: Number of processed points in time domain (real+imaginary). 

 dX.SF: Spectrometer frequency of dimension, in MHz. 

 dX.SWH: Processed sweep width, given in Hz. 

 dX.SW: Processed sweep width, given in ppm. 

 dX.user: Vector providing user-defined apodization functions (dX.TD/2 points) 

 dX.PHC1: Linear phase correction applied, in degrees. 

 dX.LPC: Compensate for linear phase correction in fitting (‘y’ is default) 

  

 

2.3.2. Signal decay information 

Aside from acquisition and processing information, lineshapes are determined by how the 

signal decays. Typically, one chooses either Lorentzian (exponential decay), or Gaussian 

(Gaussian decay) lineshapes. However, advanced options allow adding a fixed amount of 

Lorentzian or Gaussian character, or a fixed mixture or Lorentzian and Gaussian decay. 

dX.Broad: ‘dX.Broad’ is a string, specifying the type of decay which is varied 

during the fitting. This is set to ‘lorentz’, ‘gauss’, or ‘mixXX’. The first 

two options correspond to pure Lorentzian or Gaussian decay, 

respectively. ‘mixXX’ gives a fixed mixture of Gaussian and Lorentzian 

and decay, such that the fraction of Gaussian linewidth is **/100 and 

the fraction of Lorentzian linewidth is 1–XX/100 (any number of digits 

may be used, so that the fraction is given by 0.XX…). 

dX.gauss0: If ‘dX.gauss0’ is specified, a fixed amount of Gaussian broadening (in 

ppm) is added to all lineshapes. The output linewidth (‘fit.lwX’) does not 

include the fixed amount of Gaussian broadening, although the FWHM 

of each output peak (‘fit.FWHMX’) must include all contributions to the 

linewidth. 

dX.lorentz0: If ‘dX.lorentz0’ is specified, a fixed amount of Lorentzian broadening (in 

ppm) is added to all lineshapes. As with ‘dX.gauss0’, the output 

linewidth (‘fit.lwX’) does not include this fixed amount of Lorentzian 

broadening, but it is included in the FWHM (‘fit.FWHMX’). 



 21 

2.3.3. Apodization function definitions 

The following defines the apodization functions used in the INFOS software. These are 

setup to match the definitions used by Bruker Topspin. For each dimension, X, the variable 

‘t’ runs from 0 to ‘dX.AQ’, with ‘dX.TD’ points in between. The type of apodization function is 

specified in the ‘par.dX.WDW’ or ‘spec.par.dX.WDW’ field, using an index or a string, which 

are given below, along with the function definition. The other parameters (LB, GB, AQ, etc.) 

are also provided in either ‘par.dX’ or ‘spec.par.dX’.  

 No Apodization: 

 dX.WDW=0; dx.WDW=’no’; 

fapod (t) =1 

 Exponential: 

 dX.WDW=1; dX.WDW=’em’; 

fapod (t) = exp -p *LB*t( ) 
 Gaussian: 

 dX.WDW=2; dX.WDW=’gm’; 

fapod (t) = exp -p *LB*t +
p *LB*t 2

2*GB*AQ
æ
èç

ö
ø÷

 

 Sine: 

 dX.WDW=3; dX.WDW=’sine’; 

SSB ³ 2

fapod (t) = sin p 1-
1
SSB

æ
èç

ö
ø÷
t
AQ

+
p
SSB

æ
èç

ö
ø÷

SSB < 2

fapod (t) = sin p t
AQ

æ
èç

ö
ø÷

 

 Squared Sine: 

 dX.WDW=4; dX.WDW=’qsine’; 

SSB ³ 2

fapod (t) = sin
2 p 1-

1
SSB

æ
èç

ö
ø÷
t
AQ

+
p
SSB

æ
èç

ö
ø÷

SSB < 2

fapod (t) = sin
2 p t

AQ
æ
èç

ö
ø÷

 

 Sinc: 

 dX.WDW=7; dX.WDW=’sinc’; 



 22 

fapod (t) = sin 2p *SSB
t
AQ

-GB
æ
èç

ö
ø÷

æ

èç
ö

ø÷

 
 Squared Sinc: 

 dX.WDW=8; dX=WDW=’qsinc’; 

fapod (t) = sin
2 2p *SSB t

AQ
-GB

æ
èç

ö
ø÷

æ

èç
ö

ø÷  
 

 User defined apodization function: 

 dX.WDW=’user’; 

 

  
 Note that dX.apod must have the correct length, based on the acquisition time and 

 sweep width of the dimension 

2.3.4. Linear phase compensation 

INFOS will calculate lineshapes that incorporate distortions due to delay in acquisition, 

followed by linear phasing to correct for those delays. This is activated by specifying the 

size of the linear phase correction (in degrees, see 2.3.1), but can be deactivated by setting 

‘par.dX.LPC’ to ‘n’ or 0. The delay is calculated as 

  
tdelay = -

PHC1/ 360
SWH0

 

where ‘PHC1’ is the provided phase (difference of phase from left to right side of spectrum 

before truncation), and ‘SWH0’ is the sweep width of the spectrum (in Hz, before spectrum 

truncation). Note that this can slow down fitting of complicated spectra considerably. 

2.4. ‘fit’ structure: Output of FitSpec 
Upon completion of the fitting routine, the FitSpec function returns a structured variable, ‘fit’. 

This contains parameters for fitting each peak, and information on the fitting settings and 

results. The individual fields are detailed here. 

2.4.1. Peak parameters 

The following are the parameters that describe each peak in the spectrum. 

fit.I:  Peak amplitudes, given in arbitrary units. 

fit.deltaX: Peak positions in dimension X, given in ppm. 



 23 

fit.lwX: Linewidths in dimension X, given in ppm. Note that this is the 

unprocessed linewidth; for example, for a spectrum fitted with 

Lorentzian broadening, the value returned in ‘fit.lwX’ will be 1/ pT2( )  
where T2  is the time constant describing the signal decay before 

apodization. Therefore, the fitted values in ‘fit.lwX’ are, in principle, 

independent of the acquisition and processing settings. In practice, the 

accuracy of ‘fit.lwX’ values can be affected by acquisition and 

processing settings, and also will be more accurate if the settings for 

signal decay are well matched to the real type of signal decay. 

fit.FWHMX: Full width at half maximum for each peak in dimension X, given in ppm. 

This is the processed linewidth, and includes broadening that results 

from acquisition and processing settings. Therefore, for isolated peaks, 

the values returned in ‘fit.FWHMX’ should approximately match the 

measured linewidth, whereas the values returned in ‘fit.lwX’ often will 

differ from the measured linewidth, depending on acquisition and 

processing settings.  

fit.lw_indX: Since lineshapes are pre-calculated, and then recalled for fitting, each 

linewidth corresponds to a particular index. This index then gives the 

position in the ‘shapes0’ structure (section 2.6) to find the particular 

lineshape. This can be useful for accelerating spectrum calculation if 

the ‘shapes0’ structure is stored, and is used by the FitEditor2D 

program (3.6.1), although this parameter does not have relevance 

outside the INFOS software. 

fit.int: Integrals of each peak. Note that this value is simply the sum of 

intensities of each peak across the spectrum. This is opposed to being 

a boxed integral- since it is a fit, it is possible to include the entire peak 

volume without having to consider. Note that the volume is not scaled 

by DfX  (resolution in each dimension).  

2.4.2. Noise analysis and error evaluation 

The FitSpec algorithm uses noise analysis for setting some of the fitting parameters 

(‘par.cutoff’ and ‘par.npp’). If noise analysis is performed, either to determine these 

parameters or because the user sets ‘par.noise_eval’ to ‘y’, then the result is returned in 

‘fit.noise’, and also a calculation of the reduced- c 2  of the spectrum fit is returned. Noise 

analysis consists of first generating synthetic noise, and determining a probability 



 24 

distribution of the heights of noise peaks, and secondarily, from fitting that distribution to 

experimental peaks. The fields in ‘fit.noise’ are summarized below. 

noise.x: This is the x-axis for the calculated probability distribution of peak 

heights, such that the values in ‘noise.x’ are peak amplitudes. The 

values in ‘noise.x’ have been scaled to be a best fit to the experimental 

peaks. Note that this distribution only includes concave down noise 

peaks, although the concave up peaks would have an x-axis equal to –

noise.x. 

noise.fx: This is the probability density corresponding to each value in ‘noise.x’. 

The distribution is normalized such that the values in ‘noise.fx’ add up 

to one. 

noise.x_exp: This is the x-axis for the experimental noise peaks, which have been 

grouped using a histogram (‘histc’ function). As with ‘noise.x’, this then 

corresponds to experimental noise peak amplitudes. 

noise.count_exp:  

 This gives the number of experimental peaks at amplitude given in 

‘noise.x_exp’. Note that the total count has been scaled so that the 

values in ‘noise.fx’ and ‘noise.count_exp’ correspond. The un-scaled 

count can be obtained with the following: 

 noise.count_exp*noise.np_exp/sum(noise.count_exp) 

noise.np: This is the number of synthetic noise peaks measured. This number 

includes both positive and negative (concave up and concave down) 

noise peaks. It is a good estimate for the number of noise peaks 

expected in the experimental spectrum, not considering that real peaks 

will sit on top of the noise peaks. 

noise.np_exp : 

 This is the number of experimental peaks considered in the noise 

analysis. This will vary considerably, depending on whether regions of 

noise were specified, and on the ‘par.sign’ setting. 

noise.rms: This is the root mean square of the amplitude of spectrum noise. It is 

determined from the fitting of synthetic noise to experimental noise. 

Therefore, it should not be heavily biased by artifacts or real peaks, 

even if no noise region has been specified. 



 25 

noise.noise: This is the root mean square of noise peaks, and so is higher than the 

value of noise.rms, since it is selective for local maxima. It is also 

obtained by fitting synthetic noise to experimental noise. 

noise.n_fit_noise_pks: 

 This is an estimate of the number of noise peaks that will be above 

‘par.cutoff’ in the final peak picking step. This is based on the fitting of 

the synthetic noise distribution to the experimental noise and the 

number of synthetic noise peaks measured (‘noise.np’). If FitSpec is 

calculating the value of ‘par.cutoff’, then it attempts to set this 

parameter to a particular amount (see ‘par.noise_frac’ and 

‘par.n_noise_pks’ in 2.2.6). 

 

The synthetic noise distribution and its fit to the experimental noise can easily by compared 

using the following: 

 bar(fit.noise.x_exp,fit.noise.count_exp); 

 hold all 

 plot(fit.noise.x,fit.noise.fx) 

 

One usually observes differences between the synthetic and experimental noise. Partly, this 

is due to the resolution of the histogram of the experimental noise, but also occurs because 

the experimental noise also usually includes various spectrum artifacts, that are not 

produced in the synthetic noise distribution. Due to the fitting of synthetic to experimental 

noise, however, these artifacts have very little effect on noise characterization. 

 

Aside from the ‘noise’ structure, the following fields are also reported in the output structure, 

‘fit’. 

 

fit.chi_red: The reduced- c 2   is returned if noise analysis is performed. The value 

returned for ‘fit.chi_red’ is calculated according to: 

cred
2 =

1
N - nfit

Ii
exp - Ii

calc( )2
rms2i=1

N

å  

 Here, rms  is the value returned in ‘fit.noise.rms’ (see 2.4.2). Ii
exp   and 

Ii
calc  are the intensities at each point in the spectrum of the 

experimental and calculated spectra, respectively. N  is the number of 



 26 

points in the spectrum, and n  is the total number of fit variables being 

used to the fit the spectrum. 

fit.resnorm: ‘fit.resnorm’ returns the value of the squared 2-norm of the fit residual, 

as given by 

Ii
exp - Ii

calc( )2
i=1

N

å , 

 where the parameters are the same as those for ‘fit.chi_red’. 

2.4.3. Other outputs 

The FitSpec function includes several other useful outputs in the ‘fit’ structure, which are 

detailed here. 

 

fit.par: This is the full ‘par’ structure which is used internally by the FitSpec 

function. This may be used to examine how fitting was done, and may 

be used as an input to another fitting, in order to replicate all fitting 

conditions (this includes acquisition and processing parameters- 

remove par.d1…par.dN if spectra with different processing and 

acquisition are being used). 

fit.spec: This is the best-fit calculated spectrum determined at the end of the 

program. This includes all of the fields described in section 2.1, and 

can be treated as a normal spectrum. 

fit.resid: This is the difference spectrum between the experimental spectrum 

and the calculated spectrum. It also includes all fields from section 2.1, 

and can be treated as a spectrum. 

fit.fixed, fit.rangeX, fit.LI_rangeX: 

 Restrictions on the fitting variables are returned in the ‘fit’ structure 

(excluding the ‘max_lwX’ and ‘min_lwX’ settings, which are returned in 

‘fit.par’). This includes ‘fit.fixed’ (2.2.15), ‘fit.rangeX’ (2.2.12) and 

‘fit.lw_rangeX’ (2.2.13). The latter two entries are specified for each 

peak, with a lower and upper bound. ‘fit.LI_rangeX’ is the range for the 

index of the linewidth, and therefore does not give the actual range of 

the linewidths.  

 

  



 27 

2.5. ‘fit0’ structure: Initial fits and controlling fit variables 
The ‘fit0’ variable is input to give the FitSpec program an initial guess for the spectrum fit, 

which will then be refined. By default, if ‘fit0’ is provided, FitSpec will use a fixed peak list. 

However, the user may override this by setting ‘par.add_peaks’ to a non-zero value. One 

may also provide various restrictions on how the fitting parameters may be changed by the 

program, including ranges and fixing of variables. 

2.5.1. Initial guess 

The inputs for an initial guess are as follows, where the dimensions of all inputs are (np x 

1), np being the number of peaks in the initial guess. Note that the only required fields for 

the initial guess are the ‘fit0.deltaX’ fields. INFOS will estimate an initial value for the other 

fields if omitted. See section 2.4.1, as the input ‘fit0’ variable has the same parameter 

format as the FitSpec output. 

fit0.deltaX: Peak positions (required) 

fit0.I: Peak amplitudes 

 

Only one of the following is used: 

fit0.lwX: Peak linewdith 

fit0.FWHMX: Peak FWHM 

fit0.lw_indX:  Peak index. This may only be used if the ‘shapes0’ variable is provided 

(see 1.3.5 and 2.6) 

2.5.2. Fitting restrictions 

Fitting restrictions may be applied via the ‘fit0’ variable, in a similar manner as is done with 

the ‘par’ variable (see 2.2.12, 2.2.13, and 2.2.15). ‘fit0’ allows one to fix each variable type 

separately (intensity, and position and linewidth in each dimension), or to restrict ranges on 

the position and linewidth for each peak individually. Note that defining minimum and 

maximum linewidths must be done using the ‘par’ variable (see 2.2.14). 

fit0.fixed: Same as ‘par.fixed’ (see 2.2.15), allows fixing of all amplitudes, 

positions in each dimension, and/or linewidths in each dimension. 

fit0.rangeX: Range for the peak position in dimension X. This can be given as a 

single argument to restrict the positions with respect to their initial 

positions, as is done using ‘par.rangeX’ (see 2.2.12). Alternatively, one 

may specify an N x 2 sized vector, where N is the number of peaks, so 



 28 

that each row specifies the lower and upper bound of the 

corresponding position. 

fit0.lw_rangeX: 

 Range for the peak linewidth in dimension X. This can be give as a 

single argument to restrict the linewidths with respect to their initial 

linewidths, as is done using ‘par.lw_rangeX’ (see 2.2.13). Alternatively, 

one may specify an N x 2 sized vector, where N is the number of 

peaks, so that each row specifies the lower and upper bound of the 

corresponding linewidth. 

  

2.6. ‘shapes0’ cell: User specified lineshapes 
The FitSpec function uses pre-calculated lineshapes to perform calculation of the spectra. 

This allows fast calculation, and therefore efficient spectrum fitting. The pre-calculated 

lineshapes are stored internally in the ‘shapes0’ variable in FitSpec, and may be obtained 

by the user by setting a second output argument when calling the FitSpec function. 

[fit shapes0]=FitSpec(spec,par,…); 

If one is fitting multiple spectra that are acquired and processed under the same conditions 

(and have the same type of signal decay, see 2.3.2), then the ‘shapes0’ cell may be 

recycled. Then, one may enter ‘shapes0’ as a fourth argument to the FitSpec function. 

fit=FitSpec(spec,par,fit0,shapes0); 

Note that both ‘par’ and ‘fit0’ may be replaced by ‘[ ]’ if the user wants to omit these 

arguments. 

 Advanced users may also want to define their own lineshapes to be used in 

spectrum fitting. This will cause FitSpec to ignore all specifications of acquisition and 

processing information, as well as signal decay (see section 2.3), and simply use the 

specified shapes. This requires generating the ‘shapes0’ structure independently and 

providing it as an input to the FitSpec function. The requirements are described here. 

 

 The ‘shapes0’ cell is a 1 x N cell, where N is the number of dimensions in the 

spectrum. Then, each element of the ‘shapes0’ cell corresponds to a dimension 

(‘shapes0{1}’  corresponds to dimension 1, ‘shapes0{2}’ to dimension 2, and so on). Each 

element of the ‘shapes0’ cell then must have the fields that are described below. These 

give the actual lineshapes, and also the linewidths and frequency axis for each dimension. 

shapes0{X}.f:  



 29 

 This is the frequency axis of the shapes structure for dimension X. If 

dimension X of the spectrum being fitted has a size of 1 x N points, 

then this axis must have a size of 1 x 2N+8 points. Secondarily, the 

spacing between points must match that of the original spectrum 

dimension, and the values must be ascending. Finally, the point found 

in the position N+5 must be zero.  

shapes0{X}.f0: 

 This is an abbreviated form of ‘shapes0{X}.f’, and always has three 

entries (1 x 3). The first entry is the first value in ‘shapes0{X}.f’ (the 

lowest value). The second entry is the spacing between points in 

‘shapes0{X}.f’. Finally, the last argument is the length of ‘shapes0{x}.f’. 

To calculate the values in MATLAB: 

 shapes0{X}.f0=... 

 [shapes0{X}.f(1) diff(shapes0{X}.f([1 2])) ... 

length(shapes0{X}.f)]; 

 

shapes0{X}.lw:  

 This is a 1 x N vector of linewidths, where N is the number of different 

lineshapes specified.  In principle, the user may define this list however 

desired. Typically, however, it is specified with equally spaced values 

from some minimum to some maximum linewidth, and should have 

some relationship to the breadth of the line. Note that values returned 

in ‘fit.lwX’ and values used ‘par.lw_rangeX’ or ‘fit0.lw_rangeX’ refer to 

this vector. 

shapes0{X}.lw0: 

 This is an abbreviated form of ‘shapes0{X}.lw0’. The first value is the 

initial value in ‘shapes0{X}.lw’, the second is the spacing between 

values in ‘shapes0{X}.lw’, and the third is the length of ‘shapes0{X}.lw’. 

In fact, FitSpec only uses the third value, so if values in ‘shapes0{X}.lw’ 

are not equally spaced, one may simply place a zero in the second 

entry. 

shapes0{X}.FWHM: 

 This is a 1 x N vector of FWHM values, where N is the number of 

different lineshapes specified. Typically, this should give the ‘full width 

at half maximum’ of each defined lineshape. Values returned in 



 30 

‘fit.FWHMX’ refer to this vector, and also this vector is used when an 

initial guess is made at the breadth of a peak. 

shapes0{X}.shape: 

 This array stores the actual lineshapes. Each column corresponds to a 

different linewidth, so that if there are M elements in ‘shapes0{X}.f’ and 

N elements in ‘shapes0{X}.lw’, then this should be an M x N array. For 

each lineshape, the maximum is typically set to be found at the zero 

position in ‘shapes0{X}.f’. Also, each lineshape should be normalized 

so that its maximum is one. 

 

 When generating the ‘shapes0’ cell, one should take consideration of how the 

different elements are used by FitSpec. When using a dynamic peak list, FitSpec needs to 

make initial guesses as to where peaks should be placed, and what their linewidths and 

amplitudes should be. In order to do this, FitSpec finds a local maximum, and estimates its 

FWHM and amplitude. It then places a peak from the ‘shapes0’ cell, which has a value in 

‘shapes0{X}.FWHM’ that is closest to the measured value, and also aligns the zero position 

of the ‘shapes0{X}.f’ to the measured peak position. Finally, it sets the amplitude equal to 

the measured amplitude, which requires normalized peak shapes. Therefore, if one uses 

shapes that do not have their maximum at the center of the peak (not found at 

‘shapes0{X}.f=0’), then initial guesses will be inaccurate. Similarly, if the values in 

‘shapes0{X}.FWHM’ are not corresponding to the measured width, then initial values will be 

inaccurate. 

 These restrictions are lifted, however, if a fixed peak list is used. Then, FitSpec does 

not need to make initial guesses at the peak positions, so the peak maximum does not 

need to correspond to the peak center, and the FWHM does not need to be well defined (it 

still must be included in ‘shapes0’, but will not effect fitting quality). This allows one to use 

shapes that might be split into more than one local maximum, or other irregular shapes. 

Note that gradient based fitting will fail if changes between adjacent lineshapes are not 

somewhat continuous. 

2.7. ‘shapes’ cell: Recycling lineshapes for similar spectra 
The ‘shapes’ cell is used to build sub-spectra in the FitSpec routine. It is therefore 

calculated from ‘shapes0’, and is expanded into all dimensions. For spectra with the same 

acquisition and processing parameters, and the same type of signal decay (see 2.3), one 

may recycle the ‘shapes’ cell to accelerate spectrum fitting (primarily useful when setup and 



 31 

actual fitting taking similar lengths of time). The content of the ‘shapes’ cell, however, is not 

described here, as correct calculation of the cell is difficult, and unnecessary for the user. 

One may obtain the ‘shapes’ cell, however, by setting three output arguments for the 

FitSpec function. 

[fit shapes0 shapes]=FitSpec(spec,…); 

The ‘shapes’ cell may then be input for another fitting, but must be used in conjunction with 

the ‘shapes0’ cell. 

fit=FitSpec(spec,par,fit0,shapes0,shapes); 

As always, one may omit the ‘par’ and ‘fit0’ variables by replacing either with ‘[ ]’.  

3. Supplementary Programs 

3.1. Data import and export 
Currently, spectrum import and export is supported for the Bruker TopSpin and NMRPipe 

format. Export capability in this format also allows loading spectra into the CCPN software. 

The XEasy format for peak lists exporting is also supported. 

3.1.1. getSpecBruker 

This program loads spectra from the Bruker TopSpin format, in addition to all relevant 

acquisition and processing parameters, according to the definitions given in section 2.1. It 

should be noted that not all parameter definitions in Topspin exactly match those used in 

the INFOS software. ‘getSpecBruker’ will fix the discrepencies, however. ‘getSpecBruker’ 

may be used by simply specifying the data location, but also has several options. The 

following format is used for loading spectra: 

 

Using all defaults: 

spec=getSpecBruker(location); 

Note that ‘location’ specifies the location a folder- either the  acquisition folder, or a specific 

processing folder- but not the data file itself (not the 2rr file, for example). 

 

By specifying a particular range of the spectrum: 

spec=getSpecBruker(location,range); 

or by specifying several options: 

spec=getSpecBruker(location,opt); 

 



 32 

Here, one may simply load the spectrum as is, truncate the spectrum according to the 

argument ‘range’, or specify several options using the structure ‘opt’. The arguments for 

‘getSpecBruker’ are detailed here. 

location: One may specify the pathway to the folder containing the ‘pdata’ folder, 

in which case the user may specify the processing folder number in 

‘opt’, or the processing folder ‘1’ is used if unspecified. Alternatively, 

one may specify the full path to the processed data folder, in which 

case any processing number is ignored. 

range: List of the lower and upper bounds of each frequency axis. Specified 

as follows: 

 

   range=[LB1 UB1 LB2 UB2 ...]; 

 

 where ‘LBX’, ‘UBX’ are the lower and upper bounds for each 

dimension. 

opt.range: Same as ‘range’ argument. 

opt.proc_no: Specify the processing number, as a numeric argument (not a string). 

Only used if full pathway to processing folder is not given. 

opt.phase: Set to ‘y’ or ‘n’. If set to ‘y’, then complex data will be loaded in addition 

to the real valued data. In the case of 1D spectra, ‘spec.S’ will be 

complex valued. For 2D spectra, ‘spec.S’ will be real valued, but 

additional fields ‘spec.Sri’, ‘spec.Sir’, and ‘spec.Sii’ will be loaded to 

contain the hyper-complex data. For 3D spectra, only the complex data 

in the direct dimension will be loaded, in ‘spec.Srri’. Higher dimensional 

complex data is not currently supported. 

3.1.2. getSpecPipe 

This program loads spectra from NMRPipe (Delaglio et al. J. Biomol. NMR, 6(3), 277), in 

addition to relevant information on processing. Arguments are the data location and the 

range of the spectrum to be loaded. 

location: The pathway to the processed data must be specified. If data is stored 

in multiple files, this argument may be given with a wildcard. For 

example, if files are test001.ft3, test002.ft3, etc., then the location 

should be given as test*.ft3. 



 33 

range: List of the lower and upper bounds of each frequency axis. Specified 

as follows: 

 

   range=[LB1 UB1 LB2 UB2 ...]; 

 

 where ‘LBX’, ‘UBX’ are the lower and upper bounds for each 

dimension. 

Using all defaults: 

spec=getSpecBruker(location); 

Specifying a range 

spec=getSpecBruker(location,range); 

 

  

 

3.1.3. spec2Bruker 

‘spec2Bruker’ writes spectra in the INFOS spectrum format into the TopSpin format. This 

may be used to view both real spectra and calculated spectra in other software, in particular 

Bruker TopSpin and CCPN. Note that if a spectrum has been loaded into MATLAB with 

getSpecBruker, and then is later exported back into TopSpin, only the acquisition and 

processing parameters used by INFOS will be written in the new file, whereas other 

parameters may take on arbitrary values. Input format is as follows: 

 

spec2Bruker(directory,spec); 

If the directory to be written to already exists, and the user wishes to overwrite it without 

being prompted (normally, a warning prompt is given) 

spec2Bruker(directory,spec,’overwrite’); 

Note that the folder created will contain both acquisition and processing files, so that it can 

be opened in TopSpin without generating errors. However, only the parameters used by 

INFOS will be set correctly in these files. ‘spec2Bruker’ will not write imaginary data. 

3.1.4. XEasy_write 

‘XEasy_write’ generates a peak list file from the ‘fit’ structure for exporting peaks into other 

programs, using the XEasy format. Usage is as follows, where path is the location for which 

the file will be saved, and ‘fit’ is the usual spectrum fitting variable. 



 34 

 

XEasy_write(path,fit); 

 

To change the order of dimensions for the output file, one may specify an output ordering 

as a vector with the desired dimension order For example, ‘order=[1 3 2]’ will output the first 

dimension of the fit first, the third dimension of the fit second, and the second dimension of 

the fit third. 

 

XEasy_write(path,fit,order); 

Finally, as with ‘spec2Bruker’, one may overwrite existing files without being prompted by 

specifying 

XEasy_write(path,fit,order,’overwrite’); 

Here, ‘order’ may be replaced with ‘[ ]’, which will then use the default ordering. 

3.2. Peak picking and linewidth measurement 
INFOS provides very basic programs for quickly searching for peaks and for measuring 

linewidths. This includes the ‘peaks_nD’ program, and the ‘FWHM_nD’ program. 

3.2.1. peaks_nD 

‘peaks_nD’ returns all local maxima and/or minima above a given threshold. This threshold 

is given as a variable, ‘cutoff’, which is the fraction of the maximum (or minimum) of the 

spectrum that should be returned in the peak list. For example, if ‘par.cutoff=.05’, and the 

spectrum maximum is 15000, then all peaks with amplitudes above 750 will be returned. 

‘peaks_nD’, by default, will only return positive peaks, but one may specify the ‘sign’ as ‘+’, 

‘–‘, or ‘+–‘ which will return only positive, only negative, or both. These options are specified 

in the ‘par’ structure. ‘peaks_nD’ then returns a list of peak positions (one for each 

dimension), a list of intensities at each peak position, and a logical index with the same 

dimensions as the spectrum, with ‘true’ at each peak position. 

 

par.cutoff: This is multiplied by the spectrum maximum/minimum to determine the 

peak threshold. Note that if searching for negative peaks, one still uses 

a positive value for ‘par.cutoff’. The exception is if one wants all 

concave down peaks (upward pointing peaks) that have amplitudes 

greater than some negative value, then one must specify a negative 



 35 

cutoff (one may also do the same for concave up peaks with 

amplitudes less than some positive value). 

par.sign: Specifies the sign of the peaks to be searched for. Given as a string, 

either ‘+’, ‘–‘, or ‘+–‘. 

Note that to return all peaks of a given sign, one should specify ‘par.cutoff=-Inf’, rather than 

‘par.cutoff=0’, since for example, some positive peaks (concave down) may still have 

negative amplitudes. 

 

3.2.2. FWHM_nD 

‘FWHM_nD’ returns an estimation of the full width at half maximum of a given peak list, 

which may be generated with ‘peaks_nD’. For each peak, ‘FWHM_nD’ measures the peak 

height, and then moves away from the peak in each dimension and in both directions, until 

it finds a point nearest to half the amplitude of the peak. For a given peak and dimension, if 

the distance in both directions is within 20% of each other, then the distance between these 

two points is given as the FWHM. However, if one distance is more than 20% larger than 

the other, then the FWHM is given as 2x the smaller distance. This attempts to account for 

some distortions due to peak overlap to one side of a peak. Note that no linear prediction is 

used to attempt to account for linewidth error from spectrum digitization. Therefore, this 

program should only be used for initial estimates, even for well-isolated peaks. Usage is as 

follows, with ‘peaks_nD’ being used to generate the initial peak list. 

par.cutoff=.05; 

par.sign=’+’; 

pks=peaks_nD(spec,par) 

FWHM=FWHM_nD(spec,pks);  

The output then includes a ‘FWHM’ for each dimension and each peak, and also returns the 

amplitude of each peak. 

 

3.3. Spectrum manipulation 
The following programs are used for manipulating spectra (truncating, calculating slices, 

etc.), and will maintain the correct format of the ‘spec’ structure for use in other programs in 

the INFOS package. All programs work on spectra of arbitrary dimensionality. 



 36 

3.3.1. clip_spec_nD 

The ‘clip_spec_nD’ program allows one to truncate a spectrum to a particular region. This is 

called by providing the initial spectrum, followed by a range. The ‘range’ variable is a vector 

with 2 entries for each dimension, order as [LB1 UB1 LB2 UB2 …], where LBX and UBX 

are the lower and upper bounds in ppm for each dimension. ‘clip_spec_nD’ is called as 

follows: 

spec=clip_spec_nD(spec0,range); 

3.3.2. proj_nD 

The ‘proj_nD’ function performs a projection across one or more dimensions. One specifies 

the dimension(s) to be removed via projection in a vector, ‘dim’, and optionally one may 

provide the range of the spectrum to be projected over (2 entries, LB and UB, for each 

dimension to be projected over). If the ‘range’ variable is omitted, then the projections are 

performed across the entire dimension. Alternatively, proj_nD may be used to obtain slices, 

in which case one provides only one value per dimension in the ‘range’ argument. This will 

return the slice nearest to the given frequency position.  

 

To obtain a 2D projection across the whole 2nd dimension of a 3D spectrum: 

spec2D=proj_nD(spec3D,2); 

To obtain a 1D projection across part of the 1st and 2nd dimensions of a 3D spectrum: 

spec1D=proj_nD(spec3D,[1 2],[40 70 100 105]); 

To obtain a 1D slice from particular positions in the 2nd and 3rd dimensions of a 3D 

spectrum 

spec1D=proj_nD(spec3D,[2 3],[50 103]); 

3.3.3. slice_nD 

The ‘slice_nD’ function extracts slices from one or more dimensions in a spectrum. It 

utilizes linear prediction unless the slice to be extracted exactly matches a frequency 

position in the original spectrum. To avoid using linear prediction, use ‘proj_nD’ with one 

frequency position per dimension. ‘slice_nD’ requires an argument specifying the 

dimension(s) to extract slices from, and a second argument specifying the frequency 

position(s) at which to extract the slices. 

 

To obtain a 1D slice from a 3D spectrum, at positions in the 1st and 3rd dimensions: 

spec1D=slice_nD(spec3D,[1 3],[45 110]); 



 37 

3.3.4. add_spec_nD 

The ‘add_spec_nD’ function sums a series of spectra together. If the spectra do not have 

exactly the same set of frequency axes, then this function will calculate a common set of 

axes and linearly extrapolate the amplitudes in the individual spectra to obtain the 

amplitude for the common set of axes before adding the spectra together. Acquisition and 

processing parameters will be taken from the first spectrum in the series- note that adding 

spectra together with different acquisition and processing parameters will lead to less 

reliable fitting. A weight may also be included. 

 

To obtain a sum of spectra stored in a cell 

spec_sum=add_spec_nD(spec_cell{:}); 

To take the difference of two spectra, using a weight argument 

spec_diff=add_spec_nD(spec1,spec2,[1 -1]); 

3.3.5. combine_specs 

The ‘combine_specs’ function takes a series of spectra and combines them into a single 

spectrum, by adding a dimension to the spectra. The additional dimension is given a 

frequency axis that is simply numbered from 1 to the number of spectra. Useful for plotting 

a series of 2D spectra as a 3D plot. 

spec=combine_specs(spec1,spec2,...); 

3.3.6. baseline_corr 

This ‘baseline_corr’ function measures the average amplitude of a region (or regions) which 

are specified as baseline regions by the user, and then corrects the spectrum so that the 

average amplitude of these regions is zero. Having baseline corrected spectra is important 

for noise determination before fitting, although note that poor baseline is often indicative of 

larger processing or acquisition problems.  

 

To baseline correct a 2D spectrum, while specifying two baseline regions 

spec=baseline_corr(spec0,{[80 120 80 120],[80 100 140 160]}); 

3.4. Spectrum generation 
INFOS provides two programs for calculating spectra outside of the FitSpec function. The 

first is for calculating spectra from a list of peak positions, linewidths, and intensities, and 



 38 

the second program is for generating spectrum noise according to processing and 

acquisition parameters.   

3.4.1. FullSpecCalc 

The ‘FullSpecCalc’ function generates spectra from a list of peak positions, linewidths, and 

intensities for arbitrary spectrum dimensions. This information is provided in a structure, 

‘spec_par’. Then, ‘spec_par’ must have fields ‘spec_par.I’ to specify the intensity, and for 

each dimension, X,  it must have the field ‘spec_par.deltaX’ to specify the position and 

either ‘spec_par.lwX’ or ‘spec_par.FWHMX’ to specify the linewidth. These fields follows the 

same formatting as in the ‘fit’ variable (section 2.4.1). One must also provide processing 

and acquisition information, and signal decay information (see section 2.3). This is provided 

in a ‘par’ variable, which contains fields ‘par.dX’ for each dimension, X (see section 2.3 for 

formatting). Alternatively, one may provide a ‘shapes0’ structure, either being user 

generated (see section 2.6), or generated by FitSpec. Finally, the lowest ppm value in each 

dimension must be provided in a vector, ‘f’, so that ‘f’ has one entry for each dimension. 

This is required because the ‘par’ variable or the ‘shapes0’ variable provide information on 

spectrum breadth and number of points in the spectrum, but do not specify its position. 

 

To calculate a spectrum from ‘spec_par’  and ‘par’ variables: 

calc_spec=FullSpecCalc(spec_par,par,f); 

To calculate a spectrum from ‘spec_par’ and ‘shapes0’ variables: 

calc_spec=FullSpecCalc(spec_par,shapes0,f); 

 

Alternatively, if the ‘spec_par’ variable can be replaced by a ‘fit’ variable (the output from 

‘FitSpec’). Then, INFOS can determine ‘f’ and ‘par’ from information stored in ‘fit’ (assuming 

it has not been deleted by the user). The user may edit the positions, intensities, and 

linewidths in the ‘fit’ to calculate differences in the spectrum.   

3.4.2. noise_gen 

The ‘noise_gen’ function generates a spectrum of noise. This is done by taking white noise 

(normally distributed, uncorrelated) in the time domain and processing it according to the 

acquisition and processing parameters for a given spectrum. Acquisition and processing 

information is provided in a ‘par’ structure, which contains the fields ‘par.dX’ for each 

dimension X. This is described in section 2.3, although note that no information on signal 

decay is necessary. The result is then very similar to spectrum noise, although 



 39 

discrepancies may occur because of the presence of artifacts, and any frequency filtering 

within the spectral width. The format of the output of ‘noise_gen’ follows that of all ‘spec’ 

variables (see section 2.1). Note that the frequency axes are arbitrary, so they will always 

be centered at a frequency of zero. The noise returned by ‘noise_gen’ will always have an 

rms of 1. 

 

To generate a noise spectrum: 

noise_spec=noise_gen(par); 

 

 Noise generation is useful for visual evaluation of fit quality. This is because the form 

of the spectrum noise heavily influences the appearance of lineshapes with low signal to 

noise. Furthermore, the FitSpec function may opt to fit a spectrum feature that appears to 

be the result of overlapping peaks with only a single peak, and when a fit is viewed with 

spectrum noise, it becomes apparent that the feature is likely to be a result of a single peak 

and spectrum noise. The following example demonstrates how to generate a calculated 

spectrum with noise after spectrum fitting. Note that if FitSpec runs a noise evaluation, then 

the output variable, ‘fit’, contains the rms of the input spectrum. 

 

fit=FitSpec(spec); 

calc_spec=fit.spec; 

noise_spec=noise_gen(calc_spec.par); 

calc_spec.S=add_spec_nD(calc_spec,noise_spec,[1 fit.noise.rms]); 

 

Here, we have taken the fitted spectrum out of the results from FitSpec. Then, a noise 

spectrum is generated, using the acquisition and processing parameters of the calculated 

spectrum (these are the same as the original spectrum). Finally, the calculated spectrum 

and the noise spectrum are added together, using ‘add_spec_nD’ (section 3.3.4), with a 

weight of 1 for the calculated spectrum and a weight of the spectrum RMS (fit.noise.rms) for 

the noise spectrum, so that the synthetic spectrum has the same noise level as the original 

experimental spectrum. 

3.5. Plotting 
In addition to providing a variety of functions for fitting, INFOS also provides several 

graphical programs for viewing 2D and 3D spectra. 



 40 

3.5.1. quik_2Dplot 

‘quik_2Dplot’ plots 2D spectra using default settings, or according to user specified settings, 

provided in a ‘plotpar’ variable. Note that ‘quik_2Dplot’ supports overlaying spectra in 

logarithmic mode (if the user specifies ‘hold all’ for the axis), and by default will change the 

plotting color for new spectra. 

plotpar.n_contours: 

 Single integer used to specify the number of contour levels to be used 

in plotting. 

plotpar.cutoff: 

 Single value between 0 and 1 to specify the minimum spectrum 

amplitude to plot, as a fraction of the maximum of the spectrum. If set 

to an array with two entries (both between 0 and 1), the first entry will 

specify the minimum amplitude to plot and the second entry the 

maximum amplitude to plot.  

plotpar.mode: 

 String specifying the plotting mode, which is either linear (‘linear’) or 

logarithmic (‘log’). 

plotpar.colormap: 

 List of colors used in plotting, specified as an N x 3 array, in RGB 

format. Logarithmic plotting will only use 2 colors (2 x 3 array, first row 

for positive, second row for negative amplitudes) 

plotpar.range: 

 Range of the spectrum plot. Should be in the order [LB1 UB1 LB2 

UB2]. 

plotpar.dim: String specifying the plotting order. Default is ‘21’, which places 

dimension 1 on the y-axis. 

plotpar.scaled: 

 String, set to ‘y’ or ‘n’. This is used for overlaying spectra. When set to 

‘y’, overlayed spectra will take on the same contour levels as the 

previous plotted spectrum so that amplitude comparisons are 

straightforward. Default setting is ‘n’, but when set to ‘y’, this will 

override ‘par.cutoff’ and ‘par.n_contours’ settings. 

 

For a plot with user settings in ‘plotpar’: 

quik_2Dplot(spec,plotpar); 



 41 

3.5.2. qk_3Dplot 

‘qk_3Dplot’ allows quick plotting of slices of a 3D spectrum as a 2D plot. One specifies the 

plotting settings the same way as for ‘quik_2Dplot’ (3.5.1). The only exception is that 

‘par.dim’ must be a string with 3 numbers (‘321’ is default). The first two listed dimensions 

will be plotted, and the slice is extracted from the third dimension. One must additionally 

specify the frequency in the third dimension to be extracted. A range may also be plotted, in 

which case an overlay of all spectra within the given range will be displayed. By default, 

qk_3Dplot will set ‘plotpar.scaled’ to ‘y’, so that overlaid plots will always have the same 

contour levels. 

 

To plot a slice between frequency positions 110 and 111 ppm: 

qk_3Dplot(spec,par,[110 111]); 

3.5.3. qk_iso3Dplot 

‘qk_iso3Dplot’ creates a 3-dimensional visualization of a 3D spectrum. Isosurfaces of the 

spectrum are displayed for a particular spectrum amplitude (all points in the spectrum with a 

given amplitude are shown as a surface). This is set with the ‘level’ variable. The user may 

specify further settings in the ‘plotpar’ variable.  

 

Plotting if ‘plotpar’ structure is provided: 

qk_iso3Dplot(spec,plotpar); 

Plotting while only providing a level, here with both positive and negative amplitudes 

(‘level=[-.4 .4]’) 

qk_iso3Dplot(spec,[-.4 .4]); 

 

The fields of ‘plotpar’ are described below. 

level: This controls the level of the isosurface. This is given as a fraction of 

the maximum spectrum amplitude, and so should take on some value 

between -1 and 1 (0 is prohibited). A positive value will restrict the 

plotting to positive amplitudes, specifying it as negative will restrict 

plotting to negative amplitudes. One may also enter two values into 

‘plotpar.level’ (one positive, one negative) to plot both positive and 

negative amplitude peaks. By default, only positive amplitudes are 

plotted, which are 30% of the spectrum maximum (‘plotpar.level=.3’). 



 42 

plotpar.level: Same as ‘level, but entered into the ‘plotpar’ structure to allow control 

of other settings. 

plotpar.color: This controls the plotting color of the spectrum. Entry should be a 1 x 3 

array if only using positive or only negative peaks. Otherwise, it should 

be a 2 x 3 array, for which the first row gives the positive color in RGB 

format, and the second row gives the negative color. 

par.dim: This string gives the plotting order of the dimensions. Default is ‘123’. 

par.range: This vector specifies the range to be plotted. Should be a 1 x 6 vector 

with order [LB1 UB1 LB2 UB2 LB3 UB3]. 

3.5.4. slice_disp 

The ‘slice_disp’ program is a tool for viewing and extracting 1D slices of a 2D spectrum. 

One executes ‘slice_disp’ exactly the same way as ‘quik_2Dplot’ (see 3.5.1), using a ‘spec’ 

variable and a ‘plotpar’ variable. ‘slice_disp’ will then show the spectrum, but also includes 

1D plots above and beside the spectrum. These initially show the projection across each 

spectrum dimension, but the user may then click on the 2D spectrum to obtain slices 

through both dimensions. For zooming, one may use the MATLAB zoom tool as usual. In 

order to store the slices, one must call ‘slice_disp’ with one or two outputs, and ‘slice_disp’ 

will allow the user to select a point in the spectrum to slice. When storing selected slices, 

the program will terminate after the user responds ‘y’ on the command line. 

 

To store both 1D slices in a cell: 

slices=slice_disp(spec,plotpar); 

To store each slice separately: 

[slice1 slice2]=slice_disp(spec,plotpar); 

To display slices without storing the results: 

slice_disp(spec,plotpar) 

3.6. Additional fitting programs 

3.6.1. FitEditor2D 

The FitEditor2D is an interactive program used for viewing and editing 2D spectrum fits. 

One may call FitEditor2D with the variable ‘fit’, which is the output of the FitSpec program. 

Additionally one may optionally specify plotting parameters (‘plotpar’), as are described for 



 43 

the ‘quik_2Dplot’ program (section 3.5.1), and can optionally provide the ‘shapes0’ variable 

(section 2.6).  

FitEditor2D(fit,plotpar) 

 

Once called, FitEditor2D will open figures 20 and 21, and will have the following 

appearance:

 
 

 
Figure 20 (the first figure), displays the experimental spectrum, and the residual of the 

spectrum fit, as well as all controls of the FitEditor2D program. Figure 21 shows the 

calculated spectrum. All plots include a contour plot and a scatter plot of all points, and the 



 44 

‘current’ point is indicated with an X. Note that for spectra with many peaks (~1000), the 

MATLAB scatter plot becomes inefficient and so this may be slow. 

 There are several controls in the FitEditor2D program, which we describe here. Also 

note that all three plots are interactive, and can be clicked on to select peaks, or to place 

new peaks. 

Buttons: 

Add Peaks: This button enters the peak addition mode. In the peak addition mode, 

each mouse click on any of the plots will add a new peak at that 

position, with the linewidth and intensity estimated by the program (can 

be user edited after addition). Click ‘Add Peaks’ again to exit peak 

addition mode. 

Remove Peaks: This button will remove the currently selected peak. 

Undo: This will undo the last user action (peak addition, removal, editing). 

Note that if several editing steps on one peak have been made 

subsequently, all will be undone. Also, undo in peak addition mode only 

works as long as one remains in this mode. 

Recalculate: This will re-plot the spectra after editing. This does not happen 

automatically after editing because the MATLAB plotting is somewhat 

slow, so the user ideally can take several editing steps before 

recalculating. 

Fit: This will fit the spectrum, using the PartialFit routine, where the 

FitEditor2D function will determine what range to refit. If the user wants 

to refit the full spectrum, the the ‘Full Fit’ check box should be selected. 

This may be necessary for heavily overlapped regions (use if fit gets 

worse when the partial fit is run). Settings for fitting use either default 

settings or settings controlled by the user via the ‘Fit Par’ entry field 

(see below). 

Quit: This quits the FitEditor2D program. Upon exit, the program will output 

the current fit, either as a variable named ‘FE2D_fit’, or in a user 

specified name, which is entered in the ‘Output’ entry field. Also, this 

will clear the memory used by FitEditor2D.  

Entry Fields 

I, delta1, delta2, lw1, lw2: 

 These fields give information about the currently selected peak 

(amplitude, position, and linewidth). The user may also enter 



 45 

information into the fields to edit the currently selected peak (spectrum 

will not update immediately, although marker will). 

Plot Par: This field allows the user to update the plotting settings during use of 

the fit program (see section 3.5.1 for a description of the plotting 

settings). One may generate and edit a ‘plotpar’ variable on the 

command line. One then should enter the variable name in this field to 

re-plot the spectra with new settings. It is also possible to generate the 

plotpar variable in the window, by constructing a structure with the 

‘struct’ function. 

Fit Par: This field allows the user to control the fitting settings of the FitSpec 

program. One may create a ‘par’ variable at the command line or using 

the ‘struct’ function in the window, using the settings described in 

section 2.2, and enter its name into this field. 

Output: This field allows the user to create a variable that contains information 

on the current fit. Upon entering a name here, FitEditor2D will 

immediately output the current fit to a variable with the given name. 

Also, upon exit, the current fit will be written to the variable specified 

here. Therefore, if the user wants to store different fits, they should 

change the name here before program exit (otherwise it will overwrite 

the last fit). 

Other Fields 

int: Gives the peak integral. Only calculated after spectrum fitting, so that 

edited or newly added peaks will not have up-to-date integral values 

index: Gives the number of the current peak index, so that the user may 

find/edit the peak in the ‘fit’ variable. 

Full Fit: If this checkbox is selected, when using the ‘Fit’ button, the full 

spectrum will be refit, rather than performing only fits around recently 

edited peaks. This leads to better fitting but slower performance 

Lock Axes: If this checkbox is selected, zooming in on one plot will cause the other 

two plots to also zoom in to have the same axes. 

 

3.6.2. FitTrace 

The FitTrace function allows the user to fit a series of spectra simultaneously, for which the 

amplitudes in those spectra can be described by some user-defined function. In this case, 



 46 

the user must provide the series of spectra, a matrix describing the user-defined function, 

fitting parameters, and an initial fit. These are detailed below. 

fit = FitTrace(spec,trace,par,fit0); 

Here, ‘spec’ contains the series of spectra, ‘trace’ gives the user defined function, ‘par’ is 

the usual set of fitting settings, and ‘fit0’ is an initial guess of the fit.  

 

spec: The ‘spec’ variable is constructed in one of two ways. The first option is 

that the series of spectra is stored in a cell, with one cell entry per 

spectrum. The individual spectra are then structures as described in 

2.1. The second option is that a single structure is created, where the 

field ‘S’ has an additional dimension to contain the series of spectra. 

This dimension must be the last dimension. Also, it should not have a 

corresponding frequency axis in the spec structure (for example, a 

series of 2D spectra should not have a field ‘spec.f3’).  

trace.x: This is a 1xN vector which contains a parameter describing the user-

defined function to be fitted. For example, if one fits to an exponential 

decay, ‘trace.x’ would contain all possible rates of decay. Note that 

FitTrace will not extrapolate between values in ‘trace.x’, so that this 

variable must be defined finely enough to get the required precision. 

However, too many values in ‘trace.x’ will increase memory 

requirements. 

trace.Fx: This is an MxN matrix. Each column of ‘trace.Fx’ corresponds to a 

value in ‘trace.x’, giving the form of the user-defined function for that 

value of ‘trace.x’. Therefore, the length of the second dimension must 

match the number of elements in ‘trace.x’. The first dimension must 

have the same number of elements as there are spectra in the series. 

Note that the user-defined function must be differentiable with respect 

to ‘trace.x’ (since it is numeric, this is necessarily the case, but sharp 

changes in ‘trace.Fx’ will yield poor performance) 

par: The ‘par’ structure functions the same way as described in section 2.2. 

Note that setup should be done as if for the single spectra (so a series 

of 2D spectra, even if combined into a 3D structure, should be given 

2D setup parameters). The ‘par.fixed’ field may contain one additional 

entry at the end, allowing one to fix the variable on the user-defined 



 47 

function (although this option is not usually useful- since this is the 

variable one usually wants to extract) 

 

fit0: The ‘fit0’ structure is required for the FitTrace function (unlike the 

FitSpec function). Setup is the same as described in section 2.5, 

although one only provides an initial fit for the single spectra. One may 

optionally include a vector ‘fit0.x’ which provides an initial value for the 

variable describing the user-defined function. This will cause the first 

step described below to be skipped 

 

fit: The output variable, ‘fit’, is the same as described in section 2.4, 

except that it contains an additional field, ‘fit.x’, which contains the fitted 

values for the user-defined function.  

 

The FitTrace function is a special implementation of the FitSpec function. If the field ‘fit0.x’ 

is not provided, then the function begins by estimating the value of  ‘fit0.x’. This is done by 

running fits of the individual spectra, with peak position and linewidth fixed, so that only the 

amplitude is allowed to vary. The resulting amplitudes of each peak are then fit to the user-

defined function to obtain initial values of fit0.x. FitTrace then constructs a new spectrum 

which contains the series of spectra. The last dimension becomes the fitting dimension of 

the user-defined function. FitTrace sets this dimension up so that the position in this 

dimension does not vary, and the linewidth in this dimension is used as the user-defined 

variable. Because the user-defined function extends over this entire dimension, it no longer 

makes sense to break the dimension into sections (see ‘par.grid’, 2.2.1; the other 

dimensions are still broken up). This increases the memory requirements, so that FitTrace 

uses more grid sections in the other dimensions than FitSpec. This can be user adjusted to 

fewer grid sections if problems in fitting arise. Note that if memory requirements for FitTrace 

get to high, it may be beneficial to disable parallelization (see section 2.2.19). 

 Note that some series of spectra may include repetition of the same spectra 

(repetition of time points in a decay curve, for example). This is easily managed in FitTrace, 

simply by repeating rows in ‘trace.Fx’ to correspond with the repeated experiments. 

3.6.3. PartialFit 

The PartialFit function allows the user to select only part of a spectrum and fit that region. 

One must specify the region to be fitted, and optionally may select which peaks in that 



 48 

region should be fit. The advantage of using this function as opposed to simply clipping the 

spectrum (see ‘clip_spec_nD’, section 3.3.1) and fitting, is that PartialFit takes into account 

peaks neighboring the region to be fitted either by referencing to an initial fit or by 

performing an approximate peak pick and linewidth estimation of surrounding peaks before 

fitting. Note that the PartialFit function is a critical component to the FitEditor2D and the 

FitError functions. PartialFit is called as follows: 

fit = PartialFit(spec,par,fit0) 

where the ‘par’ and ‘fit0’ variables are optional. A fourth argument, ‘shapes0’, can be also 

provided (section 2.6). The ‘spec’ and ‘fit0’ are the same as described in sections 2.1 and 

2.2. ‘par’ has the same fields as described in section 2.5, plus two additional fields. 

 

par.fit_range: This is given in a vector with entries [LB1 UB1 LB2 UB2 …] where LB 

and UB indicate the lower and upper bounds of each dimension. 

Therefore, this must have a size of 2 X # of dimensions. 

par.index: This is an optional field, only available if an initial fit is given. This 

allows the user to choose which peaks should be fitted. Therefore, this 

is either a logical index with an entry for each peak (must be same size 

as ‘fit0.I’, ‘fit0.delta1’, etc.), or a list of numbers for all the peaks that 

should be fitted (to fit peaks 1,3,10, then fit0.index=[1 3 10]) 

3.6.4. FitError 

The FitError function is used for estimating error of the fitting parameters. Typically, it 

should be run using the same fitting settings as the initial fit was acquired with, in order to 

obtain accurate error analysis. The function takes a spectrum fit and the calculated 

spectrum from that fit, adds noise to it, and refits it. This is done many times (~100s), in 

order to estimate the effect that experimental noise has on fitted parameters. Statistics of 

the refit parameters can be used to estimate statistics of the experimental parameters. Note 

that application of this method is limited, however. First, it assumed that noise in the time 

domain is uncorrelated, white noise, so that error induced by spectrum artifacts, incomplete 

phase cycling, etc. will not be accounted for. Second, the error values produced are the 

representative of experimental error only if the fit is a good representation of the ‘correct’ 

values of the peak parameters. Therefore, in regions where there are missing peaks, or if a 

peak is picked which is actually noise, then the error in those situations will likely not 

represent the real error (one can consider the ‘FitError’ function to be simulating 

experimental repetition). This is discussed in more detail in the accompanying publication.  



 49 

 The FitError function does not repeatedly refit the full spectrum. Rather, for each 

peak that is evaluated for error, FitError fits a partial spectrum around that peak, using the 

PartialFit function. FitError requires that if the error of a peak is determined from a partial fit, 

then that partial fit must also include neighboring peaks that fall within a certain range of the 

peak of interest (see ‘par.NB_cutoff’ below). Also, the region fitted around the peak and its 

neighbors must have a certain width (see ‘par.H_cutoff’). However, since now some 

sections must contain multiple peaks, it is additionally possible to analyze the error of those 

peaks- if the section can be modified so that these additional peaks also have their 

neighbors and a wide enough range around the peak. This set of peaks is refererred to as a 

group in INFOS. To prevent a group from becoming too large (and therefore slow to fit), 

FitError restricts the number of peaks and the frequency range (‘par.max_peaks’ and 

‘par.max_width’). These restrictions mean that the fitting of individual groups can be 

performed without breaking the spectrum into further sub-spectrum, eliminating the need for 

multiple iterations of fitting. Because the number of parameters is limited, the fitting is 

relatively fast. Note that it is then possible that a peak will be fitted in a group, but it is not 

possible to include its neighbors, so that error analysis is not performed on that peak. In this 

case, that peak will have its own group, in order to obtain statistics. This will lead to 

redundancy in fitting some peaks, but in spite of this, breaking the spectrum into groups is 

significantly faster than repeating the fit of the complete spectrum many times. After fitting a 

spectrum, FitError can be called as follows 

fit=FitSpec(spec,fitpar); 

err=FitError(fit,par); 

It is also possible to call without any parameters (one or both of the fitting parameter 

arguments can be left out. 

fit=FitSpec(spec); 

err=FitError(fit); 

The ‘fit’ structure is simply the output of the FitSpec function. The ‘par’ structure can be 

constructed as described in section 2.2. However, note that the values in ‘par’ used during 

the initial fit are passed to the FitError function via the substructure ‘fit.par’. Since one 

should use the same fitting parameters in the initial fit and in the FitError analysis, it 

typically is not a good idea to pass new parameters via the ‘par’ structure. The exception is 

that a few additional parameters are used by FitError for determining number of refits and 

for forming the groups of peaks to be fit. Note these parameters all have default values, and 

so do not need to be provided. 

 



 50 

par.N: This is the number of times the refitting should be performed. Default is 

100, which gives reasonable estimates of the standard deviation in 

most cases. However, if a full distribution of a parameters is required 

(for example, if distribution is not a normal distribution), then many 

more (~1000) iterations may be needed.  

par.NB_cutoff: This field is determines how far to search around a peak for its 

neighbors. For a peak of interest, ‘par.NB_cutoff’ is multiplied by that 

peak’s height. Then, in each dimension, FitError determines what 

distance from the peak center the peak falls below this amplitude. 

Neighboring peaks are then defined as any peak falling within this 

range in all dimensions. Default is 10% of the maximum peak height 

(‘par.NB_cutoff=0.1’). 

par.H_cutoff: This field determines how wide the fitted area around peaks in a group 

needs to be. The value is defined similarly to ‘par.NB_cutoff’, with the 

width required being determined from a fraction of the peak height. 

Then, a group must be wide enough that all peaks in the group have at 

least the width around them defined by ‘par.H_cutoff’. 

par.max_width This is the maximum spectral width a group may have. This must have 

one entry per spectrum dimension. Note that when a group is formed, it 

is possible that the neighbors around the first peak in the group are 

spread out enough to already exceed the maximum width. In this case, 

‘par.max_width’ will be overridden, although no further peaks will be 

added to such a group. Default is 1.5x the size specified by ‘par.grid’ in 

the initial spectrum fit. 

par.max_peaks: This is the maximum number of peaks allowed in a group. As with 

‘par.max_width’, if the first peak has more neighbors than allowed by 

‘par.max_peaks’, then this parameter will be overridden. Default is 10. 

par.index: This allows the user to determine which peaks should have error 

analysis performed. Field is the same that for PartialFit (section 3.6.3). 

It should either be a logical index with the same size as ‘fit.I’, or a 

vector listing which peaks should be analyzed for error.   

 

The output of FitError then contains statistics calculated for the individual fitting parameters, 

in addition to a record of the fitting results of all ‘par.N’ fitting iterations. These are stored in 

the following fields 



 51 

 

err.par: Contains values used for error analysis as described above (‘par.N’, 

‘par.NB_cutoff’, etc.)   

err.fit: Returns the initial fit (simply the input variable returned) 

err.I_std: Standard deviations of the peak amplitudes 

err.deltaX_std Standard deviations of the peak position in the Xth dimension 

err.lwX_std Standard deviations of the peak linewidth in the Xth dimension 

err.FWHMX_std Standard deviations of the peak FWHM in the Xth dimension 

err.int_std Standard deviations of the peak integral in the Xth dimension 

err.groups Cell with the results of fitting each of the groups (has same number of 

elements as the number of groups). Inside each cell of ‘err.groups’, the 

results of the ‘par.N’ refittings are stored. Therefore, this contains all 

the same fields as in the usual ‘fit’ structure (section 2.4), excepting 

that the spectra (‘fit.spec’, ‘fit.resid’) have been removed to reduce the 

variable size. However, each fit parameter (‘fit.I’, ‘fit.delta1’, etc.) is now 

an Nxpar.N matrix, with N being the number of peaks in the group, and 

par.N the number of repetitions. There is also an additional field, 

‘err.groups{k}.calc_list’ which lists for each peak in the group its index 

in the original fit. Note that the field ‘err.groups{k}.par’ is as described in 

section 2.2, but also includes fields ‘err.groups{k}.par.fit_range’ which 

indicates the range of the spectrum that has been fitted, and 

‘err.groups{k}.par.index’ which indicates which peaks are fitted in a 

group. 

err.group_index This list indicates which group contains each peak. Note that some 

peaks can be contained in more than one group, but statistics should 

be analyzed from the group indicated here. 

err.subgroup_index This list indicates for each peak, which element of the group 

corresponds to this peak 

  

To understand indexing of groups better, a quick example on how to determine the 

histogram of a peak’s amplitude is shown. Suppose that ‘x’ is an edges vector for a 

histogram (see histc.m), and we want the histogram of the peak with index ‘k’. Then, the 

histogram is given by 

h= 

histc(err.groups{err.group_index(k)}.I(err.group_subindex(k),:), 



 52 

x-diff(x(1:2))/2); 

One sees that the correct group was found with the index ‘err.group_index(k)’, and the 

correct element of that group was found with the index ‘err.group_subindex(k)’. In the latter, 

case, the full row must be extracted for use in the histogram calculation, so the ‘:’ operator 

was used. The edges vector (‘x’) is shifted by half a unit to center the histogram. 

 

 


