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information is a particularly challenging problem for large 
molecules, addressed by many programs to aid in the 
analysis of spectral information. These include programs 
designed for assignment of resonances such as CARA, 
CCPN, NMRView, MCAssign2, and Sparky (Goddard and 
Kneller ; Hu et al. 2011; Johnson and Blevins 1994; Kel-
ler 2004; Skinner et al. 2016; Vranken et al. 2005), deter-
mination of dihedral angles such as TALOS and DAN-
GLE (Cheung et al. 2010; Cornilescu et al. 1999), atomic 
structure calculation such as ARIA2, CYANA, UNIO, and 
NIH-XPLOR (López-Méndez and Güntert 2006; Rieping 
et al. 2007; Schwieters et al. 2003; Serrano et al. 2012), and 
dynamics analysis such as relax and ModelFree (Mandel 
et al. 1995; Morin et al. 2014; Palmer et al. 1991), to name 
only a few of those most commonly used.

Such programs may take into account peak positions, 
to determine information from local electronic structure 
(chemical shift) or to determine which resonances are cor-
related, indicating bonding or spatial proximity. In this 
case, a number of algorithms exist to identify resonance 
positions (peak picking) that go beyond simple searches 
for local extrema (Alipanahi et al. 2009; Cheng et al. 2014; 
Corne and Johnson 1992; Garrett et al. 1991; Koradi et al. 
1998). However, one may want to utilize fits to specific 
lineshapes to improve peak identification, or one requires 
additional information about resonances, such as accu-
rate linewidth, amplitude, or integral values. For example, 
relaxation measurements for dynamics analysis or quantita-
tives measurement of couplings relies on series of spectra, 
for which amplitudes of peaks in those spectra are fitted 
to recoupling curves (for example, the REDOR or RFDR 
experiments (Gullion and Schaefer 1989; Sodickson et  al. 
1993)).

In this case, it is often necessary to go beyond peak-
picking and simple amplitude or integral measurement and 

Abstract  Software for fitting of NMR spectra in MAT-
LAB is presented. Spectra are fitted in the frequency 
domain, using Fourier transformed lineshapes, which are 
derived using the experimental acquisition and process-
ing parameters. This yields more accurate fits compared 
to common fitting methods that use Lorentzian or Gauss-
ian functions. Furthermore, a very time-efficient algorithm 
for calculating and fitting spectra has been developed. The 
software also performs initial peak picking, followed by 
subsequent fitting and refinement of the peak list, by itera-
tively adding and removing peaks to improve the overall fit. 
Estimation of error on fitting parameters is performed using 
a Monte-Carlo approach. Many fitting options allow the 
software to be flexible enough for a wide array of applica-
tions, while still being straightforward to set up with mini-
mal user input.
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Nuclear magnetic resonance (NMR) is a powerful method 
for obtaining atomic-level structure and dynamics of 
molecules. Using NMR spectra to determine molecular 
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fit experimental NMR data to calculated spectra, in par-
ticular when resonances are not well resolved. Fits of such 
data can be performed in the time domain or the frequency 
domain. In the frequency domain, spectral resolution 
allows fits of different spectral regions to be affected by 
different fit parameters, making optimization simpler com-
pared to the time domain, where nearly every data point is 
strongly affected by every fit parameter. On the other hand, 
apodization and truncation of data before Fourier trans-
form leads to complicated shapes in the frequency domain, 
which often are modeled with simpler Gaussian or Lorent-
zian approximations of those lineshapes (van den Boogart 
et al. 1994). A number of programs exist to fit NMR data, 
with some of the more general frequency-domain solutions 
found in NMRPipe (Delaglio et al. 1995) and dmfit (Mas-
siot et  al. 2002). Time-domain fitting programs include 
those by (de Beer and van Ormondt 1992; van Dijk et al. 
1992; Van Huffel et al. 1994).

In the interest of being able to fit spectra with many res-
onances while keeping the optimization problem simple, 
the frequency domain approach is used here. Figure 1 illus-
trates the problem of fitting frequency domain lineshapes, 
which result from Fourier transformation of truncated and 

apodized time-domain data, to Gaussian and Lorentzian 
functions. One can see that neither Gaussian nor Lorentz-
ian functions matches the signal well, particularly near the 
baseline. This problem can be resolved by using lineshapes 
calculated via processing and Fourier transform of simu-
lated signals (Chylla et al. 1998; Slotboom et al. 1998), an 
option in NMRPipe (Delaglio et  al. 1995). However, per-
forming Fourier transforms at every step in the fit optimi-
zation is computationally expensive, particularly for large, 
multi-dimensional spectra.

A second challenge is how practical usage of spectrum 
fitting software is. In a typical spectrum with significant 
peak overlap, an initial peak-picking does not always iden-
tify all peaks. Therefore, achieving a good spectrum fit 
often requires user intervention, to observe what regions 
are poorly fit, and make judgments as to where additional 
peaks should be added to make improvements. A spectrum-
fitting algorithm can perform this step to reduce the neces-
sary user input, a method that has previously been used to 
refine NMR data fitted in the time-domain, by periodically 
adding resonances and verifying if the overall fit improves 
(Chylla and Markley 1994). Finally, once a spectrum fit has 
been obtained, it is useful to have an estimate of the error 

Fig. 1   Comparison of Gaussian 
and Lorentzian lineshapes to 
processed signals. Two signals 
are shown in a, one with fast 
and one with slow signal 
decay (black), which are then 
apodized with a squared-sine 
function (apodization func-
tion is red, apodized signal is 
blue). The Fourier transformed 
signals are given in b (black). 
These signals are compared to a 
Gaussian (blue) and Lorentzian 
(red) signal with the same posi-
tion, amplitude, and full width 
at half maximum

a b
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on the fitting parameters, a problem that may be addressed 
using Monte-Carlo methods (Metropolis and Ulam 1949).

The INtelligent Fitting Of Spectra (INFOS) software has 
been developed to combine the advantages of frequency 
and time domain fitting, while also minimizing user input. 
INFOS runs in the MATLAB environment (Mathworks 
2013b), providing a convenient interface and allowing easy 
integration with other MATLAB programs for further anal-
ysis. Programs provided are open source software (general 
public license), and are distributed at infos.sourceforge.net. 
INFOS attempts to satisfy several requirements, that it is 
accurate, simple, flexible, and fast:

1.	 Accurate: The shape of each peak simulated is deter-
mined using acquisition and processing settings so that 
simulated lineshapes are well-fitted to experimental 
shapes. Linewidth is allowed to vary by changing the 
rate of signal decay in the time domain, rather than 
simply scaling the peak width. This results in lower fit-
ting error- particularly near the edges of peaks, reduc-
ing the influence that peaks have on the fits of their 
neighbors.

2.	 Simple: INFOS can be run fully automatically with all 
fitting settings determined by the software. Further-
more, INFOS iteratively determines an optimized peak 
list, if the user does not provide one.

3.	 Flexible: The user is given full (but optional) control 
of all fitting settings in order to make improvements to 
the spectrum fit. INFOS also gives the user the abil-
ity to restrict the fitting parameters (position, linewidth, 
amplitude).

4.	 Fast: Methods are implemented to accelerate the calcu-
lation of spectra, including performing fits of spectra in 
sections (sub-spectra) to reduce the complexity of fits, 
gradient-based optimization for efficient fitting, and 
use of parallel processing where possible.

The result of these requirements is that the user may eas-
ily start using INFOS, but then refine its behavior in order 
to solve their particular type of problem, without using an 
excessive amount of computational time. A summary of the 
capabilities of INFOS is given here:

Fit n-dimensional spectra.
Calculate lineshapes using acquisition and processing 
parameters.
Determine peak list while fitting –or– Fit spectra with 
input peak list.
Characterize spectrum noise.
Determine optimal fitting settings –or– Allow user-opti-
mized settings.
Restrict/fix fitting parameters (peak position, linewidth, 
amplitude).

Analyze error.
Fit user-defined functions to series of spectra.
Parallel processing.
Spectrum editing (truncating, slicing, adding, project-
ing).
Display 2D and 3D spectra.
Interactive 2D fitting.

The full list of options is quite extensive, so that users 
should refer to the user manual, found in the supplemen-
tary information and on the distribution website (http://
infos.sourceforge.net), although it is straightforward to 
get started with INFOS without knowing all options.

Methodology

The tasks performed by the INFOS software can be 
divided into several major categories, which are dis-
cussed here. These are spectrum calculation, spectrum 
fitting with a peak list, peak list determination, and spec-
trum noise-analysis and determination of fitting settings. 
The procedure for fitting a spectrum without any initial 
information is outlined in Fig.  2. Additionally, methods 
for analysis of fitting error are discussed, as are methods 
for fitting a series of spectra to user-defined functions.

Fig. 2   Flow chart for spectrum fitting. The full procedure for calcu-
lating a spectrum without any initial input is shown. Steps that are 
only necessary if the peak list needs to be determined (no initial peak 
list) are highlighted in yellow, whereas steps that also used when fit-
ting from a peak list are highlighted in blue

http://infos.sourceforge.net
http://infos.sourceforge.net
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Spectrum calculation

Fast and accurate spectrum calculation is a critical com-
ponent of the INFOS software. In order to obtain accu-
rate lineshapes one must perform the same processing 
steps used for the experimental spectrum to a calculated 
free-induction decay (FID); therefore the performance 
of INFOS depends critically on having acquisition and 
processing parameters as input. The steps to generating 
a lineshape are (Ernst et al. 1987; Hoch and Stern 1996):

For a multi-dimensional spectrum, however, this is an 
expensive computation, and would be prohibitively slow to 
use for optimization of a spectrum fit. Fortunately, there are 
several properties of this operation that allow it to be accel-
erated. First, all steps in the processing are linear opera-
tions, and therefore the initial FID may contain just a single 
peak. The final spectrum is then just a simple sum of all the 
spectra obtained from processing of individual peaks. Also, 
the shape of a peak is not affected by its frequency- so that 
it is possible to generate different frequencies simply by 
shifting the location of the processed peak in the spectrum, 
allowing recycling of the processed peaks (of course, the 
linewidths will affect the shape). Finally, a multi-dimen-
sional peak can be obtained from the Kronecker product 
of the one-dimensional peaks– and therefore one processes 
the one-dimensional FIDs and only as a final step, takes the 
Kronecker product of the one-dimensional peaks to obtain 
the multi-dimensional peak.

The following procedure can then be used for calculation 
of a spectrum, giving fast calculation but accurate lineshapes 
(illustrated in Fig.  3): At the beginning of spectrum fitting, 

Generate FID → Zero-fill FID → Apodize FID

→ Apply Fourier Transform.

for each dimension INFOS generates a series of FIDs, span-
ning a range of decay rates (discussed further below). Each 
FID is on resonance, and so does not oscillate. The FIDs are 
processed, generating one-dimensional lineshapes that are 
exactly in the center of the spectrum. Then, these shapes are 
stored for each dimension, creating a ‘catalog’ of lineshapes 
(shapes with a range of linewidths) to be later used in spec-
trum calculation during the fitting procedure. Then during 
spectrum calculation, for each peak lineshapes with the cor-
rect linewidth are selected out of the catalog in each dimen-
sion (therefore the possible linewidths take on only a discreet 
set of values in the fitting- although enough linewidths are 
stored in the catalog that it is unlikely one can distinguish 
error resulting from the discretization). The shape for each 
dimension is shifted so that it appears at the correct position. 
Once the peak is calculated for all dimensions, the Kronecker 
product is taken to obtain the peak in the full spectrum, and 
the peak is scaled to the correct amplitude. This is simply 
repeated for all peaks and then added together. This is given 
for a spectrum with N peaks by

where ⊗ is the Kronecker product, which expands the 
dimensionality, the I⃗(k)

n
 are the one-dimensional line-

shapes up to m dimensions (functions of position, �(k)
n

 and 
linewidth, Δ(k)

n
), An are the peak amplitudes, and IFull is the 

resulting spectrum.
The generation of the FID itself is also an important 

component of this process. The user may specify how the 
FID should decay in each dimension. The options are for 
the FID to have Gaussian decay (‘gauss’), exponential 
decay (‘lorentz’), or some fractional mix of the two types 

(1)Ifull =

N
∑

n=1

AnI⃗
(1)
n

⊗ I⃗(2)
n

⊗⋯⊗ I⃗(m)
n

Fig. 3   Spectrum calculation 
method. INFOS calculates 
spectra by pre-generating a 
lineshape catalog for each 
dimension, which is produced 
by inputting a series of signal 
decays with different decay 
rates and processing them to 
generate accurate lineshapes, 
which is illustrated in a. A full 
spectrum is calculated by select-
ing peaks from the linewidth 
catalog in each dimension, 
shifting them to the correct 
resonance frequency, taking the 
Kronecker product, and scaling 
to the correct amplitude. This is 
repeated for each peak and the 
result is summed together, as 
illustrated in b

a

b
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of decay (‘mixXX’). One also can add a fixed amount of 
Lorentzian or Gaussian broadening to all peaks in a given 
dimension. Note that the peak linewidths are parameter-
ized only by a single variable in each dimension, so all line-
shapes in a given dimension will be calculated using the 
same FID decay type.

Spectrum fitting with a peak list

The ‘FitSpec’ function in INFOS can fit spectra either from 
an initial peak list for which the total number of peaks is 
fixed (Fig.  2, blue sections), or can generate a peak list 
for which peaks are iteratively added and removed in 
order to fully optimize the fit (Fig.  2, all sections). Here, 
the former case is discussed. In order to simplify the fit-
ting procedure, the full spectrum is first broken into sec-
tions (sub-spectra) by applying a grid to the spectrum. 
Each sub-spectrum is fitted separately, greatly reducing 
the number of variables in each fit, and reducing the size 
of the spectrum to be calculated with each fit iteration. The 
main problem with this approach is that when fitting a sub-
spectrum, peaks in neighboring sections will overlap into 
it, distorting the fit. Therefore, before fitting of the indi-
vidual sub-spectra begins, and initial calculation of the full 
spectrum is performed, from which peak overlap between 
sub-spectra is calculated. For a given sub-spectrum, any 
overlapping peaks that are outside of that sub-spectrum 
are then subtracted away before fitting begins. After all 
sub-spectra have been fitted, the full spectrum calculation 
is updated, the overlap is re-calculated, and the fitting pro-
cess is repeated. This is done for several iterations (four, by 
default) in order to refine the fit, and minimize influence of 
peaks from neighboring sub-spectra. Note that peaks that 
are centered near the edge of a sub-spectrum tend to not be 
fitted as well, because much of their intensity will be in a 
separate sub-spectrum. In order to remedy this, the size of 
the sub-spectra is changed between the fitting iterations so 
that different peaks are on the edge of sub-spectra for the 
different fitting iterations.

In order to fit each sub-spectrum, INFOS uses a gradi-
ent-based fitting routine – the Levenberg–Marquardt algo-
rithm with a trust region (Levenberg 1944; Marquardt 
1963; Sorenson 1982) as implemented in the MATLAB 
Optimization Toolbox in the ‘lsqcurvefit’ function (Math-
works 2013a). This algorithm takes a sub-spectrum and 
attempts to minimize the difference between the calculated 
and the experimental spectrum. In order to do so optimally, 
a functional form of the Jacobian matrix for the calculated 
spectrum should be provided, where the Jacobian gives 
the derivative of each point in the spectrum with respect 
to each of the fitting parameters. For a given peak, n, in 
dimension k, the derivative of the spectrum with respect 

to the position (�(k)
n

) and the linewidth (Δ(k)
n

) is given as the 
Kronecker product of the lineshapes in all dimensions other 
than k with the one-dimensional derivative of the peak 
shape in dimension k. The derivative with respect to the 
amplitude of peak n is simply the product of the lineshapes 
in all dimensions.

The one-dimensional derivatives found in (2) are cal-
culated at the beginning of the fitting routine, as is done 
with the peak shape catalog, and are then stored for later 
use with optimization. No pre-calculated derivative is 
necessary for the Jacobian with respect to the peak ampli-
tude, since this only depends on the lineshapes, which are 
already stored in the catalog.

Peak list determination

INFOS does not need to be given a peak list to fit a spec-
trum – the ‘FitSpec’ function may also generate the peak 
list itself. The goal of peak list determination is to cor-
rectly place enough peaks in the spectrum to maximize 
information content and accuracy of the resulting fit, 
while minimizing the amount of noise that is incorpo-
rated into the fit parameters. One therefore wants to add 
peaks where the difference between the experimental and 
calculated spectra (the residual) is high, but at the same 
time remove peaks where the residual is not significantly 
improved by the peak. This is achieved in INFOS with an 
iterative process of peak list modification: a peak list is 
generated using a simple search for local extrema, a fit is 
performed as described in sect  “Spectrum fitting with a 
peak list”, and the peak list is then modified to improve 
the fit, with several iterations performed. Four methods 
of peak list modification are performed: ‘add peaks’, 
‘remove peaks’, ‘split peaks’, and ‘combine peaks’. The 
first three methods depend on a cutoff – a parameter that 
specifies that if the fit residual is below a certain height 
it should be assumed to be noise (this parameter is also 
used for the initial peak list generation). The combine 
peaks method depends on another parameter, noise-per-
peak, which specifies approximately how much noise a 
peak can fit. The four methods are detailed here, and the 
method of determining the ‘cutoff’ and ‘noise-per-peak’ 
parameters are discussed later in sect “Noise analysis and 
determination of fitting settings”.

The ‘add peaks’ method (Fig.  4a) simply looks for 
peaks in the residual spectrum (the difference between the 

(2)

dIfull

d𝛿
(k)
n

= AnI
(1)
n
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experimental spectrum and the calculated spectrum), which 
have amplitudes higher than the cutoff, and adds peaks at 
these points. The ‘remove peaks’ method (Fig. 4b) is simi-
lar to ‘add peaks’; it looks for peaks included in the fit 
that when removed, do not cause the spectrum residual to 
become higher than the cutoff.

The ‘split peaks’ method (Fig. 4c) finds single peaks in 
the fit that are likely to be two peaks in the experimental 
spectrum. This situation often arises if two nearby peaks 
(usually of similar amplitude) in the experimental spectrum 
are unresolved. Then, the initial peak pick identifies them 

as only one peak. However, INFOS will not be able to fit 
the lineshape correctly, since the shape of the two nearby, 
unresolved peaks is typically different than the shape of 
a single peak (depending on how nearby the peaks are). 
Two peaks being fitted by a single peak usually causes the 
residual spectrum to also have two peaks, one on each side 
of the fit peak. Therefore, INFOS searches around each fit-
ted peak for peaks in the residual that are above the cut-
off value, and that fall within the linewidth of the original 
peak. If two or more peaks are found in this region, then 
the original peak is removed and new peaks are placed at 
the position of the peaks originally found in the residual 
(allowing for peaks to be split into two or more new peaks). 
Note that the ‘split peaks’ method is always run before the 
‘add peaks’ method, since multiple errors in the residual 
around existing peaks would always be corrected by the 
‘add peaks’ method. However, ‘add peaks’ places two (or 
more) new peaks in addition to the existing peak, whereas 
‘split peaks’ eliminates the original peak so that only the 
two (or more) new peaks are being used to fit the region. 
This avoids over-fitting such regions, and should usually 
result in a better fit.

The final method, ‘combine peaks’ (Fig.  4d) attempts 
to eliminate regions in the fitted spectrum that are being 
over-fit. Although the other methods try to avoid placing 
too many peaks in a given region in the spectrum, occa-
sionally the fit optimization (sect “Spectrum fitting with 
a peak list”) will move two peaks towards each other so 
that they partially overlap and in fact a single peak could 
fit the region in the experimental spectrum without signifi-
cantly increasing the error. This method works by first find-
ing pairs of peaks that are separated by less than half the 
sum of their linewidths. For such pairs, the program then 
determines if the sum of the peaks yields only one resolved 
maximum in the calculated spectrum. If two maxima are 
found, then the peaks will not be combined. Otherwise, 
INFOS tries to replace the two peaks with a single peak. 
The fit residual is determined for fits both with two peaks 
and one peak (strictly speaking, the sum of squares of all 
peak maxima in the fit residual are determined). The fit 
with two peaks is almost always better, however, INFOS 
requires that it is better at least by the ‘noise-per-peak’ 
parameter; if it is better by this amount then the two peaks 
are kept, otherwise they are replaced by a single peak. 
Note that the ‘remove peaks’ method cannot play the role 
of removing over-fitting because often the two peaks are of 
similar amplitude, and so neither peak on its own fits the 
criteria for removal, but the two peaks together may fit the 
criteria for combination. It is possible during the fit editing 
that the split peaks method determines that a peak should 
be split but the combine peaks method then recombines the 
same peaks, because the two methods depend on different 

a

b

c

d

Fig. 4   Methods of peak list modification. Each plot shows an experi-
mental spectrum (blue), a fitted spectrum (black), and a fit residual 
(red), before and after execution of one of the peak list modifica-
tion methods. Dotted lines show the cutoff level for the experimen-
tal and residual spectra. a Shows addition of a new peak where the 
fit residual is above the cutoff. b Shows elimination of a peak where 
the resulting residual is less than the cutoff. c Shows splitting of a 
peak where two maxima are found in the fit residual on either side 
of the peak (a resolved peak pair is shown to better illustrate this). d 
Shows combination of two peaks, resulting in slightly higher error in 
the residual, but which is not high enough to justify fitting the region 
with two peaks
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criteria for splitting/combining, although this is not usually 
detrimental to fitting.

These methods are used in-between steps of gradient-
based fit optimization, in an iterative manner. Between 
steps of fit optimization, the methods always run in the fol-
lowing order: split peaks, combine peaks, remove peaks, 
add peaks. Note that before the last step of fit refinement, 
only the combine peaks and remove peaks methods are 
run, to avoids adding peaks before the last refinement step 
that may not help improve the fit. Additionally, the ‘cutoff’ 
parameter is set higher for the initial peak list determina-
tion, and lowered for the first two iterations of fit optimiza-
tion and peak list modification. This allows large peaks to 
be fit first, so that noise that is elevated by nearby peaks is 
not mistakenly picked as a peak.

Noise analysis and determination of fitting settings

INFOS is able to fully determine its own fitting settings 
(although it is possible for the user to override these set-
tings, to help optimize the fit). Particularly critical to opti-
mum spectrum fitting are determination of the cutoff (the 
amplitude below which a peak is assumed to be noise), and 
the noise-per-peak parameter (determines when two peaks 
over-fit a region and should be combined, see sect  “Peak 
list determination”). Determining these requires a good 
analysis of the distribution of noise in the spectrum. The 
most straightforward method to do so is to select a large, 
empty region of a spectrum and calculate the RMS (root 
mean squared deviation from zero). However, such regions 
are not always available, or easy to identify. An alternative 
method is to take a histogram of all amplitudes in a spec-
trum, and fit the histogram to the expected noise distribu-
tion (typically Gaussian), a method used in magnetic reso-
nance imaging, and in digital signal processing in general 
(Brummer et al. 1993; Caglioti and Maniezzo 1995; Sijbers 
et al. 2007; Smith 1999).

INFOS uses a similar method to estimate the noise level. 
However, because peaks are added only at local extrema, 
INFOS only includes peaks from the spectrum in the his-
togram, in order to eventually obtain a probability distribu-
tion of noise-peak heights. In order to separate signal from 
noise, INFOS first calculates a noise spectrum, by process-
ing pseudo-random white noise with the same parameters 
that the spectrum was processed with (see Fig. 5a). Then, 
rather than taking a Gaussian probability distribution, the 
histogram of the calculated noise spectrum is taken and fit 
to the experimental histogram. The variables of this fit are 
the RMS of the noise and the total number of peaks in the 
noise (the latter is necessary because signal peaks cover 
some noise, reducing the number of noise-peaks in the 
experimental spectrum). An example fit of the noise-peak 
histogram is shown in Fig. 5b. The fitted distribution (black 

line) can be used to calculate the spectrum RMS, and fur-
thermore can be used to compute the probability of a peak 
of given height being noise.

Use of a histogram reduces the impact that signal peaks 
have on the noise estimation. INFOS further only includes 
negative, concave up peaks in the experimental histogram 
to further improve accuracy (unless the fit includes negative 
peaks, in which case all peaks are used). Using this method 
in the example in Fig. 5 yielded an RMS of 959 (arbitrary 
units), compared to an RMS of 956 determined by analyz-
ing a large, empty spectrum region. Fitting a Gaussian to a 
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Fig. 5   Fitting experimental noise to a calculated distribution. a 
Shows plots of experimental noise (left) and simulated noise (right), 
with the experimental noise taken from an empty region in the spec-
trum. One can see that the simulated noise has the same characteris-
tics as the experimental noise. b Shows a histogram of experimental 
peaks fitted to a synthetic noise distribution. A histogram of all con-
cave-up (downward pointing) peaks with negative amplitude (blue) is 
fitted to a distribution of peak intensities of synthetic noise (black). 
The inset shows the experimental spectrum being analyzed. The 
RMS determined using this method is 959 (arbitrary units). The RMS 
determined from a large, empty region in the spectrum is 956
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histogram of all points in the spectrum is notably less accu-
rate, yielding an RMS of 1079 (although setting a threshold 
for amplitudes to include in the histogram could improve 
this).

Note that the accuracy of this method will be reduced 
when the amount of empty space in the spectrum is 
reduced. It also fails if acquisition and processing param-
eters are not supplied to INFOS or if they are incorrect, and 
the method is sensitive to baseline distortion (in which case 
the user will need to supply the cutoff and noise-per-peak 
settings). Once a distribution of noise is determined, the 
cutoff is then calculated so that an approximate number of 
noise peaks will be fitted in the final analysis. By default, 
INFOS sets the cutoff so that ~ 1 % of fitted peaks are noise, 
but this setting may be changed in a variety of ways (see 
INFOS manual).

INFOS must also determine the ‘noise-per-peak’ param-
eter, which determines how much the fitting residual should 
be reduced by a peak when running the combine peaks 
method. The concepts used here are related to model selec-
tion using the reduced-χ2 statistic, given by

Here, ν is the number of degrees of freedom, n is the num-
ber of observations, Oi is an observation, and Ci is a value 
calculated from a model with m fit variables. For linear 
models, with uncorrelated noise, one can equate degrees 
of freedom with number of observations minus number 
of fit variables (ν= n – m). Then, addition of a parame-
ter to the model that only fits noise is expected to reduce 
error ((Oi – Ci)2), on average, by the noise variance (σi

2), 
therefore decreasing χ2 by 1, and leaving the reduced-χ2 
roughly unchanged. A parameter that improves the model, 
as opposed to just fitting noise, leads to reduction in the 
reduced-χ2 (Hughes and Hase 2010). However, data points 
in NMR spectra are not always independent, making the 
effective number of observables difficult to determine, and 
furthermore the model is not linear, leading to an effec-
tive number of degrees of freedom which is not necessarily 
given by m – n (Buja et al. 1989).

Rather than determining the effective number of 
degrees of freedom, INFOS simply attempts to estimate 
how much the fit residual should be reduced when a peak 
fits only noise (the ‘noise-per-peak’). Then, inclusion of 
a peak in the model that results in an improved model 
should reduce the total residual more than this amount. 
Therefore, the noise-per-peak is determined by taking a 
synthetic noise spectrum (generated as described above, 
using the same RMS as determined for the experimen-
tal spectrum) and attempting to fit 75 noise peaks in 
the noise spectrum. The sum of squared peak heights is 

(3)�2
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=
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�

n
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determined before and after the fit, and the change in this 
value, divided by 75, is the noise-per-peak. Strongly over-
lapped peaks typically are much less efficient at reducing 
the fit residual (whether they are fitting actual peaks or 
noise), and so if inclusion of a peak in the fit cannot at 
least reduce the residual as much as a peak fitting only 
noise, then it is removed.

A number of additional settings control the INFOS opti-
mization. The number of iterations taken during the gradi-
ent-based minimization, the number of iterations of fitting 
individual sub-spectra and reconstructing the full fit and 
full spectrum, and the number of iterations to edit the peak 
list are all set by INFOS—however, they do not depend 
on spectrum signal-to-noise, and so are simply fixed val-
ues which give good, but quick fitting of spectra. The size 
of the grid for fitting sub-spectra is also optimized- to give 
approximately 3 peaks per sub-spectra, but also is set to 
give less than 20,000 data points in a sub-spectrum (adjust-
ment of the grid is sometimes necessary – more sub-spectra 
give faster fitting, but lower quality fits, especially if there 
are broad peaks).

Functional fitting

INFOS can fit a series of spectra for which amplitudes in 
the series can be fitted to some user-defined function, using 
the ‘FitTrace’ function (similar capabilities are found in 
the NMRPipe program (Delaglio et  al. 1995)). The user-
defined function must depend on some variable (called ‘x’ 
by INFOS), and is provided numerically for each possible 
value of the variable ‘x’ (and also for each spectrum in the 
series). Typically, this is something like a series of spec-
tra for which exponential decay occurs and the relaxation 
rate corresponds to ‘x’, or some recoupling occurs and the 
size of the recoupled interaction corresponds to ‘x’. The 
‘FitTrace’ function takes such a series and performs an ini-
tial fit of the individual spectra. From this initial fit, ampli-
tudes are extracted in a series for each peak in the spectra. 
These series of amplitudes are then fitted initially to the 
user-defined function (determining an estimate of the peak 
amplitude and ‘x’ for the complete series). INFOS then 
constructs a new spectrum for which the last dimension is 
now the user-defined function. The complete series of spec-
tra is fitted at the same time, with the last dimension being 
fitted to the user-defined function. Note that ‘FitTrace’ 
must be supplied with an initial peak list.

Error estimation

INFOS can estimate the error of fitting parameters, 
with the ‘FitError’ function, using a simple Monte-
Carlo approach (Metropolis and Ulam 1949). The basic 
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methodology is relatively simple: INFOS uses the fit 
parameters determined for an experimental spectrum 
and calculates a ‘noiseless’ spectrum. Synthetic noise is 
added to this spectrum, with the same RMS as is deter-
mined from the experimental spectrum (noting that this 
is processed noise, as described in 1.4). Then, this fully 
synthetic spectrum is re-fit. The process is repeated a 
number of times (typically ~ 100  s of times), with a dif-
ferent set of noise added each time, and statistics are then 
performed on the resulting fit parameters. The result is 
essentially a simulation of experimental repetition. Note 
that recently, a similar ‘bootstrapping’ approach has been 
reported, which instead of using synthetic noise, uses 
noise sampled in sections from the fit residual (Waudby 
et al. 2016).

To accelerate this process, INFOS determines for each 
peak in a fit, what other peaks are sufficiently nearby to 
affect the fitting of that peak. Then, only a peak and its 
neighbors are refit in a truncated spectrum. This trun-
cated spectrum is fit with only one sub-spectrum, elimi-
nating the need to use iterative refitting in order to cor-
rect for neighboring sub-spectra (as is done with a full 
spectrum). This greatly accelerates the process of error 
analysis, since refitting a full spectrum hundreds of times 
can be very computationally expensive.

Note that the error reported by this method estimates 
how a fitted parameter would vary when an experiment is 
repeated many times. One should be very cautious, then, 
in the extent that this error analysis can be used to esti-
mate the real error, i.e. can be interpreted as the confi-
dence that a fitted parameter is within a certain range of 
the true value. For example, if a peak in the fit actually 
is fitted to two resonances in the spectrum (which have 
not been resolved with spectrum fitting), then the fitted 
peak can potentially be much further away from the two 
‘correct’ peak positions than the error resulting from this 
analysis estimates. For the error reported here to be a 
good estimate of the true error, the spectrum must be well 
fit: in a given region, the true number of peaks matches 
the number of fitted resonances, and the lineshapes 
should be good matches between experiment and fit. It 
is also difficult to estimate error for peaks with intensi-
ties near the spectrum noise level, since the fit param-
eters describing them are underdetermined. Finally, the 
dominant source of error must be white noise in the time 
domain. Error due to experimental fluctuations (tempera-
ture, sample quality variation, etc.) cannot be accounted 
for using this method, nor can spectrum artifacts.

Parallel processing

INFOS performs some operations using parallel process-
ing, using the ‘parfor’ function in MATLAB (Mathworks 

2013b). Fitting of sub-spectra is performed in parallel, if 
multiple processer cores are available. However, peak list 
editing is not performed in parallel, and significant commu-
nication overhead reduces gains from parallel processing. 
Also, error analysis using the ‘FitError’ function is fully 
parallel, and the ‘FitTrace’ function uses parallel process-
ing for the initial fitting of individual spectra in the series 
(and uses parallel processing for fitting of sub-spectra in 
the subsequent simultaneous fitting of spectra).

Supporting functions

INFOS provides a number of additional functions for 
manipulating spectra. Truncating spectra (‘clip_spec_nD’), 
spectrum projections (‘proj_nD’), slice extraction (‘slice_
nD’), and addition (‘add_spec_nD’) are all available func-
tions. Although these are relatively straightforward opera-
tions, acquisition and processing parameters need to be 
edited to be consistent with the new spectra, and so it is 
necessary to use the provided programs for these opera-
tions. INFOS also provides the ‘FitEditor2D’ function, 
which allows interactive fitting of 2D spectra. Currently 
INFOS exports peak lists using the XEasy format (Bar-
tels et al. 1995), and can import and export spectra in the 
Bruker Topspin format (Bruker Biospin 2016) or import 
spectra processed in NMRPipe (Delaglio et al. 1995). Note 
that CCPN can convert between a number of different peak 
list formats, including XEasy (Skinner et al. 2016; Vranken 
et al. 2005).

Examples and discussion

Basic fitting

The fit of a DARR spectrum (of HET-s fibrils (Siemer et al. 
2006; Van Melckebeke et al. 2010; Wasmer et al. 2008)) is 
shown in Fig. 6. For this example, the experimental spec-
trum was the only information provided to INFOS, in addi-
tion to the acquisition and processing information. For a 
spectrum stored in the Bruker Topspin format, this can be 
achieved by the following:

spec=getSpecBruker(path_to_spectrum);

fit=FitSpec(spec);

Here, ‘path_to_spectrum’ is a string containing the location 
of the spectrum, and the variable ‘spec’ subsequently stores 
that spectrum, in addition to information on acquisition and 
processing of the spectrum. The variable ‘fit’ is a structure 
containing all the information from fitting (peak positions, 
amplitudes, linewidths, and integrals, as well as all set-
tings). The resulting fit included 391 peaks, and was fitted 
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in 213 s (MacBook Pro Retina mid-2012, 8 processes). As 
one can see, a fairly accurate reproduction of the spectrum 
has been achieved, without any instruction supplied by the 
user.

The previous example represents a relatively straight-
forward case, and so to push the limits of the INFOS 

fitting routine, a 400  ms C–C DARR spectrum is tested. 
The region between 0 and 100 ppm was fit, yielding 4009 
peaks (~ 11000s with 12 processes, Intel IvyBridge at 
2.9 GHz). The resulting fit, shown in Fig. 7, is very good, 
with a reduced-χ2 of 1.75. The complexity of the spec-
trum required some optimization of settings, so that the 

a b c

Fig. 6   Fit of a 50 ms C–C DARR spectrum (HET-s fibrils). a Shows 
the experimental spectrum b shows the calculated spectrum after fit-
ting. c Shows the fitting residual (experimental minus calculated), 
where only a few poorly fit regions appear. The fit shown here was 
performed without any user instruction to the ‘FitSpec’ function, 

beyond supplying the spectrum, which contained acquisition and pro-
cessing information. The lowest contour level is set to 1.2 % of the 
spectrum maximum, which corresponds to the cutoff value deter-
mined by ‘FitSpec’

Fig. 7   Fit of a C–C DARR 
spectrum (Ubiquitin, 400 ms). 
The fit was performed between 
0 and 100 ppm, with a truncated 
region shown. The experimen-
tal spectrum is shown in blue/
light blue for positive/negative 
intensities. The fit residual is 
shown in red/light red. The fit 
was performed with a cutoff of 
0.2 % of the spectrum maxi-
mum, and the contour minimum 
is at 0.15 % of the maximum. 
Three slices are extracted with 
experimental (blue), residual 
(red) and calculated (black) 
spectra shown. Dashes mark 
peak positions that are within 
+/− 0.3 ppm in the vertical 
dimension. Three regions are 
expanded to show fit quality and 
peak placement. Experimental 
spectrum is courtesy of Kathrin 
Szekely
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cutoff was adjusted to 0.2 % of the spectrum maximum, the 
gridding of the spectrum was adjusted to be 23 × 23, and 
the number of peak additions was changed to 6 (adjusted 
from defaults of 0.14 %, 45 × 46, and 4 respectively). The 
automatic settings in INFOS are a compromise between 
speed and fit quality, so that highly complex spectra usu-
ally require some adjustment. One notices that the diagonal 
has been fitted with many peaks– this is because although 
deviations of the experimental peak shape from the calcu-
lated shapes are relatively small, the large amplitude of the 
diagonal enhances those errors, so that INFOS adds addi-
tional peaks to refine the fit. Similar over-fitting can also 
occur elsewhere, although it is possible to reduce this by 
increasing the ‘noise-per-peak’ parameter, which will lead 
to more unresolved peaks being combined.

Comparison of fitting programs and lineshapes

In order to assess when INFOS is most useful, it is com-
pared to the fitting routines provided in NMRPipe (Dela-
glio et  al. 1995). Also, the use of lineshapes determined 
from acquisition and processing parameters is compared to 
fitting with simple Gaussian lineshapes. For the first exam-
ple the C–C DARR (50  ms) spectrum shown in Fig.  6 is 
refitted using Gaussian lineshapes, and also is refitted with 
NMRPipe, using Gaussian lineshapes. Note that it is neces-
sary to set groups in NMRPipe to determine which peaks 
are fit simultaneously, via grouping. This has a critical 
effect on performance, where it is important that overlap-
ping peaks are placed in the same group, but large groups 
increase computational time. Here, groups were set by 
visual inspection so that overlap within a group occurs 
only at a contour level where significant noise is also vis-
ible (resulting in 37 groups, the largest of which had 111 
peaks). The results are given in Table 1.

One sees that the best fit is obtained with INFOS, when 
using lineshapes derived from acquisition and processing 
parameters, yielding χ2

reduced = 1.28, versus 1.49 for Gauss-
ian lineshapes. Compared to NMRPipe, the computational 
time is also significantly improved, and an additional boost 
is obtained from parallel processing. The lower fit quality 
obtained using NMRPipe is probably due to some over-
lap between groups. It is possible to reduce the number of 
groups in NMRPipe to improve the fit, but it comes at the 
cost of higher computational time. One must similarly trade 
computational time for fit quality in INFOS, where smaller 
sub-spectra lead to faster fitting but lower quality fits, how-
ever compensation for overlap of peaks in neighboring sec-
tions reduces the cost in fit quality (see sect "Spectrum fit-
ting with a peak list"). In INFOS, lineshapes derived from 
acquisition and processing parameters also outperformed 
Gaussian lineshapes for the 400 ms C–C DARR spectrum 
shown in Fig. 7, with χ2

reduced of 1.75 and 1.99, respectively.

Although INFOS is efficient in fitting spectra with non-
Gaussian lineshapes, an alternative approach to optimizing 
fits is to make lineshapes as Gaussian as possible, using 
the Lorentz-to-Gauss apodization function (Ernst 1966). 
Figure 8 shows an Hα–Cα correlation spectrum processed 
with Lorentz-to-Gauss apodization, and fitted with INFOS 
vs. NMRPipe. In this case, fitting with lineshapes calcu-
lated from acquisition and processing parameters in INFOS 
yields nearly the same error as fitting with Gaussian shapes 
in NMRPipe (see Table  1). Because peaks are already 
nearly Gaussian, it is possible to get high quality fits with 
Gaussian lineshapes. Computation time using NMRPipe 
is also now identical to the time using INFOS, since the 
group size in NMRPipe is relatively small. Note that for 
a group in NMRPipe and a sub-spectrum in INFOS with 
the same size and number of peaks, NMRPipe fits consid-
erably faster when using Gaussian lineshapes. However, 
for crowded spectra, groups in NMRPipe need to include 
many more peaks than the sub-spectra in INFOS to obtain 
high quality fits, yielding faster fitting overall by INFOS. 
Fit quality using acquisition and processing parameters in 
NMRPipe is considerably lower, and computational time is 
much longer (see Table 1).

Note that to take full advantage of gains from lineshapes, 
it is necessary to use the correct type of signal decay in the 
time domain (for example exponential vs. Gaussian decay). 

Table 1   Comparison of INFOS and NMRPipe Performance

�2

reduced
 is defined as given in (3), where ν is number of points in 

the spectrum minus number of fit variables (5 × number of peaks). 
Computational times are for a server with Intel IvyBridge processors 
at 2.9  GHz, either using a single process or 12 processes. Compu-
tational times are for fitting from an initial peak list, whereas times 
listed in the text are fits without an initial list

Program (Line-
shapes)

INFOS
(Acq./Proc.)

INFOS
(Gaussian)

NMRPipe
(Acq./Proc.)

NMRPipe
(Gaussian)

Spectrum: 50 ms C–C DARR, see Fig. 6
�2

reduced
1.28 1.49 – 3.18

Time (1 pro-
cess)

200 s 200 s – 1200s

Time (12 pro-
cesses)

31 s 31 s – –

Spectrum: 400 ms C–C DARR, see Fig. 7
�2

reduced
1.75 1.99 – –

Time (12 pro-
cesses)

2700s 2800s – –

Spectrum: Hα–Cα correlation, see Fig. 8
�2

reduced
1.26 1.57 5.33 1.27

Time (1 pro-
cess)

46 s 49 s 1600s 46 s

Time (12 pro-
cesses)

14 s 14 s – –
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In the previous example of an Hα–Cα correlation spectrum, 
decay parameters were set as follows:

par.d1.Broad=’Gauss’;%Gaussian decay 
in 1st (13C) dimension
par.d2.Broad=’Lorentz’;%Exponential 
decay in 2nd (1H) dimension
fit_AP=FitSpec(spec,par); %Fit the 
spectrum

Curve fitting and the FitTrace function

The next example demonstrates the benefits of using spec-
trum fitting to extract peak intensities that will then be used 

to fit to some type of functional curve. In this case, a series 
of synthetic spectra with four peaks are considered. Each 
peak in the spectra decays with a different rate, according 
to an exponential decay function (R = 5 s− 1, 1 s− 1, 0.5 s− 1, 
and 2 s− 1 for peaks 1–4). Also, noise is added to each spec-
trum (the first spectrum of the series is shown in Fig. 9a). 
Then, spectrum fitting is used to extract the peak intensities 
of the synthetic spectra, and the rate of decay is extracted 
from those intensities. A synthetic data set is used, so that 
it is possible to know the correct rate and therefore test the 
method. In order to extract intensities, a reference spec-
trum is fit (in this case, the first spectrum in the data set), 
while allowing intensities, linewidths, and positions to 
vary. Then, all spectra are fit, but with linewidths and posi-
tions fixed to match those of the reference fit (this is also 
the method used in (Smith et al. 2016), where INFOS was 
used for data analysis). The resulting intensities are plot-
ted for each of the four peaks in Fig. 9b (blue circles). For 
comparison, intensities are also extracted by simply taking 
the amplitude of the spectrum at the given peak position 
(Fig.  9b, red circles). First, one sees that the intensities 
extracted using spectrum fitting match the real intensities 
(Fig. 9b, black dashed line) better than those extracted sim-
ply from the spectrum amplitude. Second, when fitting the 
resulting peaks to exponential decay, the rates are usually 
better reproduced. Note the severity of the disagreement 
between the rate predicted using only the peak amplitude 
and the correct rate for peak 4 (1.25 s− 1 vs. 2.00 s− 1). This 
is caused in part by the strong overlap between peaks 3 and 
4, but this problem is almost entirely resolved by spectrum 
fitting (2.00 s− 1 given using spectrum fitting).

If one has a series of spectra for which the amplitudes 
follow some functional form throughout the series, it 
is possible to fit the complete series simultaneously. In 
contrast to the previous example, all spectra are fitted 
together, so that all spectra have the same peak positions 
and linewidths, and the amplitudes in each individual 
spectrum are restricted so that the series of amplitudes 
follows exponential decay. This option is limited to func-
tions that are characterized by a single variable. How-
ever, beyond this limitation, any function may be used for 
which the derivative with respect to the function variable 
is defined. In this case, the user provides the function in 
a structure ‘trace’ and the spectra in a cell (see manual 
for details). An initial spectrum fit must be given for this 
type of fitting.

fit0=FitSpec(spec0,par); %Initial 
spectrum is fitted
trace.x=0:.1:50;%Possible values for 
relaxation rate
trace.Fx=exp(-t*trace.x); %Exponential  
functions

Fig. 8   Fit of an Hα–Cα correlation spectrum using INFOS and 
NMRPipe. The experimental spectrum was processed with Lorentz-
to-Gauss apodization functions in both dimensions to generate Gauss-
ian shaped lineshapes. a Shows the experimental spectrum (blue/grey 
for positive/negative) and fit residual (red/black for position/nega-
tive), along with peak positions (green x’s) after fitting with INFOS 
using lineshapes calculated from acquisition and processing param-
eters. b Shows the same, after fitting with NMRPipe using Gaussian 
lineshapes. The lowest contour level is drawn at 2  % of the experi-
mental spectrum maximum
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%Note that t is a column vector with 
the experimental delays
fit=FitTrace(spec,trace,par,fit0);%Fit 
series of spectra

Figure 10 shows the fitting of a spectrum for which the 
individual peaks undergo exponential decay. Here, one 
sees that the behavior of the series of experimental spectra 
is well reproduced by the calculated spectrum, where the 
peak heights all are required to decay exponentially.

a b

Fig. 9   Curve fitting using spectrum fitting. A time series of 15 spec-
tra is fitted, to extract intensities that are then fit to exponential func-
tions. a Shows the first spectrum in the time series, with the peak 
positions numbered from 1 to 4. Note that noise with RMS that is 3 % 
of the maximum of the first spectrum is added to all spectra, and the 
lowest contour level is set to the level of the RMS b shows the inten-

sities for each peak (labeled 1–4) extracted using spectrum fitting 
(blue circles), and the fit of those curves to exponential (blue lines), 
as compared to the actual decay curve (black line). Intensities are also 
extracted by simply taking the amplitude of the spectrum in the center 
of the peak (red circles), and these are also fitted to an exponential 
(red lines)

Fig. 10   Simultaneous fit of a series of spectra with exponential sig-
nal decay (R1ρ relaxation). Each plot shows the first 2D spectrum 
(with peak positions marked) over an isosurface of the series of spec-
tra. Then, narrowing of the isosurface indicates signal decay. a Shows 
the series of experimental spectra, with the isosurface plotted at 40 % 

of the spectrum maximum. b Shows the calculated spectrum, also 
with the isosurface at 40 %. c Shows the residual of the fit, with the 
isosurface plotted at 7 % of the spectrum maximum. The minimum 
contour level of the first spectrum in c is also plotted at 7 %
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Peak amplitude error analysis

In the next two examples, the use of efficient spectrum fit-
ting as a means of error analysis for peak positions and 
amplitudes is investigated. Error analysis is executed as fol-
lows, after first fitting the spectrum:

fit=FitSpec(spec,par);%Fit spectrum
err=FitError(fit); %Determine error

In the first example, the standard deviation of the peak 
height for a spectrum is estimated both via repetition 
and via the error analysis implemented in INFOS (see 
sect  "Functional fitting"). A time series was measured 
using a 2D Hα–Cα correlation experiment (see Fig.  8), 
with all time points acquired in triplicate. Therefore, for 
each peak and each time point, it was possible to calculate 
the standard deviation of the amplitude. Averaging these 
together across the time series gives reasonable estimates 
of the standard deviation of each peak height (data in trip-
licate alone does not give good enough estimates of the 
standard deviation). This can be compared to the error esti-
mated using the INFOS error analysis, as applied to only 
the first spectrum in the data series (note that error analy-
sis and fitting of the time series were performed with only 
peak amplitudes variable; positions and linewidths were 

Fig. 11   Comparison of methods of error analysis. An Hα–Ca cor-
relation spectrum (see Fig. 8) has been used to obtain a time series 
(13 time points), and repeated in triplicate. The standard deviation 
of peak amplitudes for the repeated time points has been determined 
and averaged over all time points, to give an estimate of the standard 
deviation in amplitude for each fitted peak. This value is plotted on 
the x-axis. The standard deviation of the peak amplitude estimated by 
INFOS error analysis (using only the first spectrum of the series) is 
plotted on the y-axis, showing good agreement of the two methods. 
The inset axis shows an additional point falling outside the main axis, 
and the grey line shows the diagonal for which the two methods give 
the same result
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Fig. 12   Estimation of peak position error using INFOS error analysis. 
A series of 60 synthetic spectra with low signal-to-noise ratio were fit-
ted and analyzed, with an example spectrum shown in a. Each of the 
60 spectra were fitted and analyzed for error, first using an initial fit 
that included all peaks in the synthetic spectrum (Known peak list), 
and second allowing INFOS to determine the peak list (Unknown peak 
list). b Shows histograms of the deviation of the fitted peak positions 
to the nearest correct peak position, normalized by standard deviation 
of the peak as determined by error analysis (red). For the known peak 
list, the deviations are in very good agreement with a standard nor-

mal distribution (black, dashed), as is desired for useful error analysis. 
However, for the unknown peak list, agreement is lower, with the his-
togram of peak position deviation being wider than the standard nor-
mal distribution, indicating that the error analysis has underestimated 
the true error. c Marks peak positions (red x) on the test spectrum 
(without noise) that fall outside of 4 standard deviations of the correct 
peak center. These peaks tend to either be falling between two correct 
peaks (see expanded region), or are simply due to particularly high 
noise at some position. Example synthetic spectra were adapted from 
experimental Ubiquitin H–N correlations (Penzel et al. 2015)
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fixed in all fits). In Fig. 11, a scatter-plot compares the two 
estimation methods for each of 98 peaks in this particular 
fit. Although there are a few outliers, the agreement of the 
two methods is quite good, as seen since most points fall 
near the diagonal (55 points fall below and 43 fall above 
the diagonal).

Peak position error analysis

One may also estimate error of peak positions using 
INFOS. In order to test this, a series of synthetic spectra 
were generated – synthetic spectra are used so that the cor-
rect peak positions are known exactly. The spectra had low 
signal-to-noise, with an example shown in Fig. 12a. These 

spectra were then fitted by INFOS, and subsequently ana-
lyzed for error. For each peak in the fits, the deviation of 
that peak in each dimension to the nearest correct peak was 
determined, and then normalized by the standard deviation 
of that peak (determined by INFOS error analysis). In the 
ideal case, the collection of all peak deviations analyzed 
this way should then have a standard normal distribution. 
This is the result obtained if INFOS is provided an initial 
peak list, as shown in Fig. 12b, left column, so that there 
are no peaks from the original spectrum missing in the fit. 
In fact, this merely verifies that the method of re-fitting 
only partial spectra as opposed to the full spectrum, as 
described in 1.5, does not distort the results of error anal-
ysis significantly. Nonetheless, it gives a good estimate of 
the response of a spectrum fit to experimental noise, keep-
ing in mind that the primary source of error then must be 
white noise in the time domain, as opposed to other experi-
mental fluctuations.

On the other hand, if INFOS is provided with a spec-
trum for which the signal-to-noise is too low to clearly 
distinguish all peaks, and INFOS must determine the peak 
list, then performance is considerably worse, as shown in 
Fig.  12b, right column. In this case, INFOS makes mis-
takes in peak picking due to the low signal-to-noise. These 
mistakes are not accounted for by the error analysis, and 
therefore lead to peaks in the fit that fall much further away 
from correct peaks than is predicted by the error analysis. 
For example, Fig.  12c marks peak locations occurring in 
the 60 fits for which the fitted peak position falls more than 
4 standard deviations away from any correct peak, in one or 
both dimensions. The first cause of mistakes in peak place-
ment is that two peaks in the original (noise free) spectrum 
are fitted by a single peak in the fit. This can be seen in the 
expanded region of Fig. 12c, where a number of peak pairs 
are fitted with a single peak in between the two original 
peaks. Additionally, throughout the 60 fits, approximately 
35 peaks are placed far away from any peak in the origi-
nal fit. In fact, these misplaced peaks are entirely expected: 
based on the cutoff level determined in ‘FitSpec’, it was 
expected on average to fit 0.54 “noise peaks” per spectrum 
(see sect  "Noise analysis and determination of fitting set-
tings"), and so for 60 spectra, statistically, it is expected 
that 32 peaks that are noise will exceed the peak threshold.

Caution should be taken when comparing the strong 
agreement of peak amplitude error via INFOS analysis and 
experimental repetition and the less promising agreement 
between deviations of fitted peaks positions from the true 
peak positions as compared to the predicted error. The dif-
ference between these two analyses is that in the former 
case, one examines how experimental repetition compares 
to simulated repetition. Here, one finds strong agree-
ment, showing that if the best method of obtaining error is 
experimental repetition, then error analysis via INFOS can 

a

b

Fig. 13   Distribution functions for peak position error. Error is ana-
lyzed for the spectrum shown in a, refitting each peak 3000 times to 
obtain a distribution of peak positions for several peaks (numbered 
1–4). The distributions are shown in b (red, with x7 blowup in lighter 
red), where it can be seen that the larger the signal-to-noise is, the 
smaller the standard deviation (S/N, σ, top of each plot). One also 
observes that peaks with increasing signal-to-noise deviate from hav-
ing a normal distribution (black, dotted line)
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provide a powerful and time saving alternative. The latter 
case shows that obtaining the distribution of fitted peak 
position vs. true peak position is not always possible if an 
accurate fit is not obtained. It is worth noting that experi-
mental repetition also would not resolve this challenge, 
since one still requires an accurate fit.

When using error analysis, it is also important to know 
the form of the distribution, since it may not be a normal 
distribution. Several peaks are analyzed in the spectrum 
shown in Fig. 13a. The higher the signal-to-noise of a peak 
is, the smaller the error in position becomes (Fig.  13b). 
Additionally, peaks with higher signal-to-noise are increas-
ingly not normally distributed. If one is calculating con-
fidence intervals for the position of a peak, then the non-
normality significantly complicates analysis; it becomes 
necessary to use many iterations of error analysis to obtain 
a well-determined distribution (3000 were used in Fig. 13), 
whereas if the position is normally distributed, then one 
simply needs the standard deviation, which can be deter-
mined much more quickly.

The FitEditor2D function

Although most fitting can be performed using the ‘FitSpec’ 
function, it is also useful to be able to edit a fit interactively. 
This is possible for 2D spectra using the ‘FitEditor2D’ 
function. This function allows basic operations on a fit, 
such as adding and removing peaks, as well as adjusting 
parameters of existing peaks. It also allows refitting edited 
parts of the spectrum or refitting the complete spectrum. 

The graphical user interface of the ‘FitEditor2D’ function 
is shown in Fig.  14. The ‘FitEditor2D’ function must be 
called starting from an initial fit.

fit0=FitSpec(spec); %Perform an ini-
tial fit
FitEditor2D(fit0); %Start the FitEdi-
tor2D function

Conclusions

The INFOS software improves on common fitting methods 
by using peak lineshapes determined from acquisition and 
processing settings, as opposed to pure Gaussian or Lorent-
zian shapes. Pre-calculation and storage of these lineshapes 
greatly accelerates fitting speed, as is shown via compari-
son to similar options in NMRPipe. Additionally, INFOS 
provides an efficient, automated means of refining a peak 
list to improve spectrum fits without over-fitting. Use of 
spectrum fitting has been shown to be an effective method 
of extracting information from overlapping peaks, in par-
ticular when extracting amplitudes from a series of spec-
tra. INFOS can both be used to fit individual spectra in a 
series and subsequently fitting the amplitudes, or fitting an 
entire series simultaneously, using a user-defined function 
to describe the series. Finally, spectrum fitting can be used 
to estimate error on spectrum fit parameters, by simulating 
experimental repetition, using Monte Carlo methods.

Fig. 14   Graphical user interface of the ‘FitEditor’ function, which 
allows interactive manipulation of a fit. The left plot shows the exper-
imental spectrum, and the right plot shows the residual of the fit. Sev-

eral buttons and entry fields allow editing and control of fitting. A 
second window shows the calculated spectrum (not shown)
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