Supporting Information for

# Equilibration of tyrosyl radicals $(Y_{356}, Y_{731}, Y_{730})$ in the radical propagation pathway of the *E. coli* class Ia ribonucleotide reductase

Kenichi Yokoyama<sup>†</sup>, Albert A. Smith<sup>†#</sup>, Björn Corzilius<sup>†#</sup>, Robert G. Griffin<sup>†#</sup> and JoAnne Stubbe<sup>†‡</sup>\*

Departments of Chemistry and Biology, and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307.

Corresponding author e-mail address: stubbe@mit.edu

<sup>†</sup> Department of Chemistry, Massachusetts Institute of Technology.

<sup>‡</sup> Department of Biology, Massachusetts Institute of Technology.

<sup>#</sup> Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology.

## **Table of Contents**

#### **Supporting Methods**

- **Figure S1.** LC-MS analysis of peptides from tryptic digestion of wt- $\alpha$ 2 and [ $\beta$ -<sup>2</sup>H<sub>2</sub>]Y- $\alpha$ 2.
- Figure S2. Effects of sample preparation conditions on PELDOR spectra.
- **Figure S3**. CW-EPR spectra of the reactions with  $[NO_2Y_{122}]-\beta 2/wt-\alpha 2/ATP/CDP$ .
- **Figure S4.** Time course of  $NO_2Y$  reduction and the pathway radical formation.
- **Figure S5.** Definition of  $\theta$ .
- **Figure S6.** Quantitation of  $[\beta^{-2}H_2]Y \cdot$  at 12, 24 and 60 ms at 25 °C.
- **Figure S7.** EPR spectral simulation of  $[\beta^{-2}H_2]Y^{\bullet}$ .
- **Figure S8.** An Arrhenius plot of the NO<sub>2</sub>Y• reduction in the [NO<sub>2</sub>Y<sub>122</sub>•]- $\beta$ 2/wt- $\alpha$ 2/ATP/CDP reaction.
- **Table S1.** Dihedral angles ( $\theta$ ) for Ys in  $\alpha$ 2.

#### **Supporting Methods:**

**Ouantitation of the amount of [\beta^2H\_2]Y incorporated in \alpha 2 by LC-MS.** Purified  $[\beta^2H_2]Y-\alpha 2$  (2) mg/ml) in 8 M urea (Sigma Aldrich), 50 mM ammonium bicarbonate (pH 7.8) was incubated with 10 mM DTT at 60 °C for 45 min. Cysteine residues of this protein were then alkylated by 22 mM iodoacetamide at room temperature (RT) in the dark for 1 h. Urea and excess reagent were removed by repeated concentration/dilution with 50 mM ammonium bicarbonate using a Microcon (Millipore) YM-10 centrifugal filtration device. Trypsin (Porcine pancreas, Sigma) was then added at an enzyme-to-substrate ratio (w/w) of 1:30, and incubated for 16 h at RT. The reaction was stopped by adjusting the pH to ~3 using 1% formic acid and the solution filtered through the Microcon YM-10 centrifugal filter to remove trypsin and any remaining undigested protein from the small peptides. The peptides were then analyzed by a nano flow high-performance liquid chromatography (HPLC) system (Eksigent Tempo) connected to an electrospray ionization mass spectometer, QSTAR Elite quadrupole time-of-flight mass spectrometer (AB Sciex). A reversed phase C<sub>18</sub> capillary HPLC column (250 x 0.075 mm, Higgins Analytical) was used. The mass spectrometer was calibrated with the fragment ions of peptide Glu-fibrinopeptide B with a mass accuracy of < 25 ppm.



**Figure S1.** LC-MS analysis of tryptic peptides of non-labeled wt- $\alpha 2$  and  $[\beta - {}^{2}H_{2}]Y-\alpha 2$ . MS of peptide fragments containing  $Y_{730}$ - and  $Y_{731}-\alpha 2$ , TLYYQNTR, are shown for non-labeled wt- $\alpha 2$  (A) and  $[\beta - {}^{2}H_{2}]Y-\alpha 2$  (B). The fragment was detected as the doubly charged ion with m/z of 529.76 ± 0.03 for non-labeled wt- $\alpha 2$  (A), which agrees with the calculated m/z of 529.77. In the  $[\beta - {}^{2}H_{2}]Y-\alpha 2$  sample, a doubly charged ion at m/z 531.77 ± 0.05 was observed with the same retention time (B). This result is consistent with the calculated m/z of 531.77 for the peptide fragment with two  $[\beta - {}^{2}H_{2}]Ys$ . In B, a small signal with m/z 529.76 ± 0.03 that corresponds to the non-labeled peptide, and no signal that corresponds to the peptide with one  $[\beta - {}^{2}H_{2}]Y$  was observed. Based on the relative intensities of these peaks, the  $[\beta - {}^{2}H_{2}]Y$  incorporation was estimated to be > 92%. The sequence of peptides with m/z 529.76 observed in (A) and the peptide with m/z 531.77 in (B) were further analyzed by fragment ion MS to confirm that the observed signals are associated with the expected TLYQQNTR peptide.



**Figure S2.** Effect of freezing method (A, B) and protein concentration (C, D) on the PELDOR spectra. (A) PELDOR spectra of 0.2 mM [NO<sub>2</sub>Y<sub>122</sub>•]- $\beta$ 2 prepared by hand-quenching with 5% glycerol (red) or 30% glycerol (yellow) and by rapid freeze quenching with 5% glycerol (blue), and with 0.2 mM wt- $\beta$ 2 prepared by rapid freeze quenching with 5% glycerol (green). All traces are normalized by the signal intensity at t = 0; (B) Spectra corrected by subtraction of monoexponential signal decay function and fit by Tikhonov regularization procedure<sup>1</sup>; (C) PELDOR spectra of rapid freeze quenched samples prepared with 0.2 (red), 0.1 (black) and 0.05 mM (blue) [NO<sub>2</sub>Y<sub>122</sub>•]- $\beta$ 2 and  $\alpha$ 2/CDP/ATP and quenched at 24 ms. All traces are normalized by the signal intensity at t = 0; (D) The analysis is as described in B.



**Figure S3**. 9 GHz CW-EPR spectra of the reactions with  $[NO_2Y_{122}\bullet]$ - $\beta 2$  (0.1 mM), wt- $\alpha 2$  (0.1 mM), ATP (3 mM) and CDP (1 mM) at 25 °C and freeze quenched at (A) 8 or (B) 24 ms. The subtraction of NO<sub>2</sub>Y• spectrum (green, 79 and 66% of total radical in (A) and (B), respectively) from the observed spectrum (blue) resulted in pathway Y• spectrum (red, 21 and 34 % in (A) and (B), respectively). Note that the NO<sub>2</sub>Y• feature is broader than the Y• feature on the low field side facilitating subtractions.



**Figure S4.** Time course of NO<sub>2</sub>Y• reduction and Y• formation with  $[\beta^{-1}H_2]Y-\alpha^2$  (blue, NO<sub>2</sub>Y• and orange, Y•) and  $[\beta^{-2}H_2]Y-\alpha^2$  (green, NO<sub>2</sub>Y• and red, Y•) at 25 °C monitored by RFQ-EPR spectroscopy. Sequential mixing RFQ was carried out as described in Methods<sup>2</sup>. Each point represents an average of three replicates.



**Figure S5.** (A) Numbering for atoms of tyrosine. The  $p_z$  orbital on C1 is indicated. The amino and carboxy groups attached to C $\alpha$  are omitted for clarity. (B) Definition of the ring rotation angle  $\theta$  in tyrosine.  $\theta$  (-90° ~ +90°) represents the dihedral angle between C<sub> $\beta$ </sub>-H<sub>pro-S</sub> bond and the  $p_z$  orbital on the C1 atom of the phenyl ring of Y.



**Figure S6.** Quantitation of  $[\beta^{-2}H_2]Y \cdot$  at 12, 24 and 60 ms at 25 °C. EPR spectra of the pathway  $Y \cdot$  in the  $[NO_2Y_{122} \cdot] -\beta 2/[\beta^{-2}H_2]Y \cdot \alpha 2/ATP/CDP$  reaction (red traces) were reconstructed using  $Y_{356} \cdot$  observed in the  $[NO_2Y_{122} \cdot] -\beta 2/[Y_{731}F] \cdot \alpha 2/ATP/CDP$  reaction (blue) and that of  $[\beta^{-2}H_2]Y \cdot$  simulated using the parameters shown in Table 1 (pink). The sum of the  $Y_{356} \cdot$  and  $[\beta^{-2}H_2]Y \cdot$  spectra is shown in the black traces. To determine the amount of  $[\beta^{-2}H_2]Y \cdot$ , the ratio of  $Y_{356} \cdot$  and  $[\beta^{-2}H_2]Y \cdot$  spectra was adjusted to minimize the difference between the red and the black traces. The ratios of  $Y_{356} \cdot$  and  $[\beta^{-2}H_2]Y \cdot$  determined by this analysis are indicated. Other details of the analyses are described in the main text.



**Figure S7.** EPR spectral simulation for  $[\beta^{-2}H_2]Y$ • with hfcs for  $\beta^{-2}H$  of 6 (blue), 8 (red), and 10 MHz (green) with additional parameters summarized in Table 1 in the main text.



**Figure S8.** An Arrhenius plot of the NO<sub>2</sub>Y• reduction in the reaction of  $[NO_2Y_{122}\bullet]-\beta2/wt-\alpha2/ATP/CDP$  monitored by SF-absorption spectroscopy at 460 nm as described previously<sup>2</sup>. Rate constants were determined from 4-7 traces. Briefly, Fe(II)<sub>2</sub>- $[NO_2Y_{122}]-\beta2$  (40 µM, 5 Fe(II)/ $\beta2$ ) in anaerobic 50 mM HEPES (pH 7.6) in syringe A was mixed with an equal volume of O<sub>2</sub>-saturated 50 mM HEPES (pH 7.6) containing CDP (4 mM) in syringe B and aged for 0.5 - 2 s to maximize NO<sub>2</sub>Y• formation in the incubation loop. The resulting solution was then mixed with equal volumes of wt- $\alpha2$  (20 µM), ATP (6 mM), EDTA (2 mM) and MgSO<sub>4</sub> (30 mM) in 50 mM HEPES from syringe C. The final reaction mixture contained 10 µM [NO<sub>2</sub>Y<sub>122</sub>]- $\beta2$  and  $\alpha2$ , 3 mM ATP, 1 mM CDP, 1 mM EDTA and 15 mM MgSO<sub>4</sub> in 50 mM HEPES. Experiments were carried out at 5, 10, 15, 20, 25 and 37 °C. In all cases, the kinetics were biphasic except for 37 °C, where the fast phase occurred within the mixing dead time. Lines are the linear least squares fit to log (k) = log (A) –  $E_a$  / (R x T), where k is a rate constant,  $E_a$  is the activation energy, R is the gas constant, and T is the temperature in K.

| <b>Table S1.</b> Dihedral angles ( $\theta$ ) for Ys in $\alpha 2$ . <sup><i>a</i></sup> |                               |                               |                   |
|------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------|
|                                                                                          | Y <sub>730</sub> <sup>b</sup> | Y <sub>731</sub> <sup>b</sup> | PDB ID            |
| <i>E. coli</i> wt                                                                        | -67 °                         | +3 °                          | 2X0X <sup>3</sup> |
| E. coli Y <sub>730</sub> NH <sub>2</sub> Y mutant                                        | -67 °                         | +82 °                         | $2XO4^4$          |
| Yeast                                                                                    | -58 °                         | +53 °                         | 2WGH <sup>5</sup> |
| Human                                                                                    | -55 °                         | +61 °                         | $2EUD^{6}$        |
| Salmonella typhimurium                                                                   | -68 °                         | +19 °                         | $1 PEQ^7$         |

<sup>*a*</sup> Dihedral angles ( $\theta$ , see Figure S5 for definition) between the C<sub> $\beta$ </sub>-H bond and the p<sub>z</sub> orbital on C1 of Y<sub>730/731</sub>- $\alpha$  found in the crystal structure of class Ia  $\alpha$  from *E. coli*, *S. cerevisiae* and human and class Ib  $\alpha$  from *S. typhimurium*. <sup>*b*</sup> Numberings for *E. coli*  $\alpha$  are used.

### Reference

- (1) Chiang, Y. W.; Borbat, P. P.; Freed, J. H. J. Magn. Reson. 2005, 172, 279-295.
- (2) Yokoyama, K.; Uhlin, U.; Stubbe, J. J. Am. Chem. Soc. **2010**, 132, 15368-15379.
- (3) Yokoyama, K.; Uhlin, U.; Stubbe, J. J. Am. Chem. Soc. **2010**, 132, 8385-8397.
- (4) Minnihan, E. C.; Seyedsayamdost, M. R.; Uhlin, U.; Stubbe, J. J Am Chem Soc 2011.
- (5) Fairman, J. W.; Wijerathna, S. R.; Ahmad, M. F.; Xu, H.; Nakano, R.; Jha, S.; Prendergast, J.; Welin, R. M.; Flodin, S.; Roos, A.; Nordlund, P.; Li, Z.; Walz, T.; Dealwis, C. G. *Nat Struct Mol Biol* 2011, *18*, 316-322.
- (6) Xu, H.; Faber, C.; Uchiki, T.; Racca, J.; Dealwis, C. *Proc Natl Acad Sci U S A* **2006**, *103*, 4028-4033.
- Uppsten, M.; Färnegardh, M.; Jordan, A.; Eliasson, R.; Eklund, H.; Uhlin, U. J. Mol. Biol. 2003, 330, 87-97.